DAZ
Carrara SDK™

Overview

Extension Architecture

©2001-2007 DAZ 3D, Inc. All rights reserved.

Version 6.0
September 2007

Page 2

©2001-2007 DAZ 3D, Inc. All rights reserved.

The software described in this manual is furnished under a licensing agreement contained in the license.txt
file in the SDK folder. It may only be used or copied in accordance with the terms of this license. No part of
this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical or otherwise, without the prior express written permission of DAZ 3D, Inc.

The information in this user guide is provided for informational use only, is subject to change without notice,
and should not be construed as a commitment by DAZ 3D, Inc. DAZ 3D, Inc assumes no responsibility or
liability for any errors or inaccuracies that may appear in this user guide.

Licensee acknowledges that the CarraraSDK Development Toolkit may contain bugs, errors and other
problems that could cause system failures. Consequently, the CarraraSDK is provided to Licensee “AS IS,”
and DAZ disclaims any warranty or liability obligations to Licensee of any kind. Accordingly, Licensee
acknowledges that any research or development that it performs regarding the CarraraSDK or any product
associated with the CarraraSDK is done entirely at Licensee’s own risk.

LICENSEE ACKNOWLEDGES THAT DAZ MAKES NO EXPRESS, IMPLIED, OR STATUTORY
WARRANTY OF ANY KIND FOR THE PRODUCT INCLUDING, BUT NOT LIMITED TO, ANY
WARRANTY WITH REGARD TO PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY
PARTICULAR PURPOSE.

DAZ SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF REVENUE, LOSS OF PROFITS,
BUSINESS INTERRUPTION, LOSS OF INFORMATION OR DATA AND THE LIKE) ARISING OUT
OF THE USE OF OR INABILITY TO USE THE PROTOTYPE EVEN IF DAZ HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page i

Table of Content

Chapter 1 - Introductionccceeeeeiiiiiieeiiieee e 1
What is the Carrara SDK 7iiiiiiniiiiinniinniiiinnisniinsiineisioseisisseesiesssssssssssssssssssssses 1
An open architecture for 3D. ..o e 1
Headers and LIDTATY.cccioriiiiiiiiieeie ettt ettt et e et e e s ateebe e s b e enteesaeeeabeeeees 1
SAMPIES. .evieiiieiieeieecie ettt ettt e e et e et e et e e st e esbeesteeeabe e bt e anbe e bt e erbeeseeesaeenteeeraeesaeenraensaeenne 1
DOCUMENEATION. ..iiuiiiiiiiieciie et ecee et e et e e st e et eeestbeeetaeesssbeeesseeessseeesseeensseesssseessseesnseens 1
IMICSKEECR. ettt ettt ettt e bt e s bt et sat e bt et esbeeaesaeents 1
Supported Platforms and COMPILErS.ccveriieiiieiieiiieiecie ettt e 1
What’s New IN Carrara 6 7coeeiiiveeininnicisnicssnncsssnicsssnssssssess 2
UNICOAE SUPPOTL ..ottt ettt ettt ettt e st e et e e stteesbeessaeesbeeseessseenseesnseenseessseenseensseenseeseas 2
NON LiN€Ar ANTMATION ...eoiuiiiiiiiiieiieeiite ettt ettt et e st e bt e sateebeesane e bt e saeeeabeenbeeeaee 2
Large SCENES SUPPOTLveeieuietieieetienteeiestteteestesseetessaesseessesseesseessesseensesssesseesseessessesssesseensesssenseenses 2
IMUIEIPLE SELECTION ...iiiiiiiiieiie ettt ettt ettt e et e et e st e e st e e nbeenseeenseeseeenseenenes 2
What’s New IN CArrara 5 7 ..iiiniiniinneinnninniinniineisissiisissisissisisssssssosssssssssssssssssssses 2
Change 1N TESOUTCE fI1ES ...c..eiuiiriiiiiiiiiieee ettt 2
SCENE COMMEANSeuiiiieiieiieiitete ettt sttt et b et satesb et ebtesbe et e saeenbesbeenbeeneens 2
GROSE NI ...ttt ettt et e bt et s et et e e es e et e en b e saee bt entesseenbeensesneentes 3
Tree ChOOSET QIALOZeeiiiiiieeii ettt ettt ettt sttt e st e e beeseeeenneens 3
Class Id dfINITION ...oouviruiiiiiieitieert ettt st b et sbt ettt bt b et e b enees 4
Lihting IMOGELScuveiiiiiiieiieeie ettt ettt ettt et e st e ebe e st e esbeeseessbeessaassseenseessseenssessseenseas 4
Change 1N INTETTACESecueiuiiiiiriieieiieeeee ettt ettt ettt et st sa e e e b ennes 4
How the Whole thing WOTKScccuiiiiiiiiniiiiniiiniiiinsnicnsnicnsnissssicssssncssssnsse 4
Shell and EXTENSIONS ...c..covuiiiiriiiiieiieitieie ettt ettt et st e bt et ese e bt et e s st ebeeneesenenseennens 4
COM dynamic HNKINGooueiiiiiiiiiiiiiieeeer ettt ettt sttt et et sbe s 4
Identifying Components at startup: Auto Plug-And-Playccccoeviiiiiiiiiniicieeceeeeeeee, 5
Family ID, Class ID... ...cccciooiiiiiiiieeitecie ettt ettt et e e e et e ssbeeseaesbeensaeenseensaessseensnes 5
AN 1 T B £ v 1 VoL USRS 5
Communicating between the 3D Shell and the 3D Componentccccecevvenenienieneniienceiennne. 6
Component User Interface and Parameter Maps (PMap)coccvevvieeiienieniieiiecieeieeceeeveeseve e 6
Chapter 2 - Creating an EXtensioncccccevvvvvieeeeeeeeeeecccciiineeeeennn. 9
The resource files (.dat ANd .EXTE) ..cccovvvricciirrnnicssssnniessssssrecsssssssssssssssessssssssasssssassssssssssssssssssssssssssssssssns 9
Building the re€SOUICE fI1€eoiiiiiiiiiieiiecieeieeee ettt ettt e e aeeeabeesseessseeeeas 9

ON WINAOWS: .eiiiiiieiiiie ettt ett e st e e st e e e tbeeatbeeesseeesseeesssaeasssaeassseeesseessseesssseessseeesseenns 9

ON MACOS ...ttt ettt ettt e bt st et st et st e b e b e 10
Extracting the localized strings from .dtacccooeiiiiriiiiiie e 10
THE "COMP’ TESOUITEuvveeieiieeiieeeiieeeiteeeteeesteeeetteeetaeessaeesseeesssaeessseeesseesnsseessseesssseessseennseens 11
ThEe "GUID’ TESOUITE ...cuveeuiiiieiieiierieete ettt sttt sttt et sbt et st e s bt et satesbe et e eatesbeentesbeentesaeenee 12
THE "PIMAP’ TESOUICTE ..eeecuvieieiieeiieeeiieeeieeeeteeesteeeeteeesaeeesaeeesseeesssaeessseeessseesssseesssseessseeessseesseens 13
Shaders and PMAapPScoiiiiiiiiiieceteee ettt sttt 14

The executable file (.IMCX) .ueciicrrrrnricnnsseniecsssnrecssssasiesssssssessssssssssssasssssssassess 14
Build the €XeCUtableooouiiiiiii e e 14

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page ii

ENETY POINES ..ottt ettt ettt st e b e st e et e st e e bt e saeeeaseeeaeeenne 14
The COmMPONENT CLASS ..c.vviiiieiiieiieriie ettt ettt ettt e s te e bt estaeesbeessaeesseesseessseenseesnsaenseensnas 15
TBASICUNKNOWIL ...ttt ettt et et e et e bt e et e et e e sateenbeenaeas 16
USEE INTEITACE cocuueiiieniiiiiiiiniiinitninininisinticisnnissstessnnessssnesssssessssssssssssssssesssssssssssssssssssssssssssssssssssssns 17
The "INOGE” TESOUICE. ...cuveiuiiiiitiiiieiiteteete ettt ettt ettt et sttt ht et et sbe et et e sbeentesasentesaee e 17
The PMap DUTTET ...cooeeiiieie ettt e s e e e e aveeeaaeeenaeeenseeas 17
Chapter 3 - Using DAZ’s COM Dynamic Linking 19
ADOUL COM uuuiinniiniinninsniinninsnicnnisssicssisssessssssssssssassssssssssssssssssssssssssssssassssssssassssessssssssssssassssssssass 19
Component Registration ProCessccoeeiccnineiicnsssniccssssnrscsssssssess 19
How the Component SErver WOTKScoccoieenieniiennennsnensnnsssecsessssesssessns 19
How the Application Calls your EXteNSIONccovveieiseicssnisssancssssncsssnss 19
EXtension ENtry POINSc..oiiiiiiiiiiiice ettt et e e e eeenes 19
IMINTMAL TESOUTCES ...eeuvvieeiiieeiieeeiieeeteeesteeesteeestteeeteeesseeessseeessseeessseeesseessseesssseessseeessseessseesnnes 20
How your Extension Calls into the AppliCationcccccieviieiiierieiiiieierie e 20
Using Shell objects received as Parametersccecceeeecieeeriieeiieeeireeeiieesreeesseeessneessseeeenns 21

Using preset Shell objects stored in the library global variablesccccoccoviiniiiininnnenn 21
Instanciating a Shell 0bject YOUrSelfcoooiiiiieiiiiiiicic e 21

THE “PMaAP” TESOUICE ...eeuveeeiiieeieiieeitieeeieeeeieeesteeesteeestaeeeseeessseeessseeessseessseesnsseesnsseesnsseensseenseens 22
IMCUDKNOWI CLASS couuviirniiissnninisnnenisnnessencsssnncsssnecsssnesssssesssssessssssssssssssssesssssesssssessssssssssssssssssssssssssses 22
What iS @ COM ODJECL? ..uvieiiiiiiieiieeiieeiieste ettt ettt ete e e seaeebaessaeesbeessaesnseesseessseeseesnsaens 22

L@ 0155 7 B3 1155 o i 1o OSSR 23

F N (6) SRR PRUSRRRSSR 23
REIBASE ..ttt ettt ettt ettt e ae e et nae e 23
More on Querylnterface, AddRef and Releaseccoocuveveiiiiiiiiiiiiiceeceee e 24
Registering your Class ID With DAZieniinninnniensennsnnnsnenssncsssensessssesssessssssssssssssssssssssssssess 24
3 (O I (T4] 1< ST STSRSR 24
Contacting DAZ - Developers Mailing LiStccooocuiiiiiiieiiie e 25
Chapter 4 - Platforms and Compilers 1SSUEScceeeeeeeeeeicnnnnnnnnen. 27
Compiling for WINAOWSueiiiviiciriinisnicssnissssnessssnssasssssass 27
Creating a new extension project for Visual C++ 2005:cooiiiiiiiiiieeeeee e 27
Compiling fOr MACOS ...ouuieniinrirntiniinntensenssesssessssessssssssssssssssssssssssssssssssssassssssssssssassssassssssssssssasss 28
Creating a new pProject for XCOAEoooviiiiiiiiiiiiieiieeieeee et e e e eaeees 28
Debugging 0n MacCOS ...t e e e e et e e e aae e enaeeenreeeennes 28
Chapter 5 - User Interfacecccceeeeeeiiiiiiiiiiiiiieeeeeeeeeeeecee, 29
User INterface OPLiONScccececveesisencsssnncsssnicssssisssanssssassssssssssssssssssssssasssssassssssssssssssssssssssssssssssssssnss 29
INO USEE INTETTACE ...ttt ettt et st e b e bt e et ens 29
AULO PIMAAD <.ttt ettt e et e it e et e st eesbeeeebeeenabeeeas 29
PMap and @ Partcoouiiiiiieeeeee et et e e eeeanee 30
Samples using a PMap and .11 f11€cocviieiiiiiiiiceceee e 31

Part EXTENSIONS ...uviiuiiiiieiiiiteiiieteete sttt ettt ettt ettt et st be et e b e be et e sbeenbesbeenbeentea 31

TO create @ Part EXEENSION:eeeruiieriiieeriieeiteeeriteeeeeeeteeesaeeesebeeesaeesssaeessseeessseessseesnseeennneens 31

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page iii

Manually Controlling Your Own User INterfacecueeneecsenneensensenssnensneesssecssesssnesssesssnecsaees 32
Creating your User Interface CONTAINETScccveeiiiriieriieniieiieeiieeiie et eseeeeveeieeeaeeeeesaeeeseesenes 32
0L BT T BT 1 (Tl oo). G USRS 32
USINEZ @ WINAOW ..ottt ettt sttt ettt sbe et s enbe e 32
Setting @ Child Part’s VAlUEScccieiiiiiiiiiieeiiee ettt et 33
Examples of Specific user interface elementsccocoverecnicniiccicsnricssssnnnesssssnnecssssnssscssssssssssssssseces 34
Registration DIalo@ DOXcc.eiiiiiiiiiiiieie ettt ettt et 34
1100 o o A OO 35
Creating @ Component CROOSETc..eeiiiiiiiiiieeiiieeiee et eiee et et eeseveeetaeessseeesaeeessaeeesseesnseeas 36
IMICSKELCR ..cueeiiiniiiiirinintiinsnnicssnneissnncsssnessssnessssssssssesssssesssssessssssssssesssssesssssesssssesssssssssssssssssssssssssssns 36
Extra Tokens for Each Partiiiiiniviininncnssencsseicssnicsssnsssssssssasssssenes 36
List of all UL elements (PArtS) ...cccccecvvsrreccsssnniecscsnsecsssssssesss 36
TMFEditTextPart - Edit TEXt PAItcccueeiiiiiieiieeie et et s 37
TMFICONBULONPAITcoeiiiiiiiiii ettt 37
TMETEeXtBULIONPATTcooouiiiiiiiiie ettt et 37
TIMEDIAIPATITooiiiiiiiie ettt e et e et e e e ta e e e beeesabaeesaseeesseeessseesnsaeesnsaeensseennseens 38
TMFEFHIErarchiCalLIStPAITccc.ccoviiiiiiiieiieciiete ettt et e ve et ebe et e esseesaeeabeenseensnas 38
TIMEFTIMAZEPATLeoeeiiiiieeee ettt e e et e e e et e e e et eeesntaeeeesnnneeeeensaeeeennnees 38
TMECRECKDOXPAIToeiiiiiiiie ettt e et e e e et e e s saeessbee e asaeesaeeensseeenseens 39
TIMEFCOIOTPAIT ...ttt ettt et s et ettt esbeentesaee e 39
TMFOverlayImageControlPartccciiiiiiiiiiieciceee et eeae e 39
TMERAQIOPATToeieeiiiiceee ettt e st e e e e e eaa e e esbeesasaeeeasaeesnsaeesseeenseeas 40
TMETOOIDATPAIT ..ottt sttt ettt et et et e s seentesnee e 40
TIMEINOEPATT ...ttt ettt et a e et e st e st e e bt e eabe e beesaeesaneenaeas 40
TMFAUOCENETINZPATTeiiiiiiiiiiiiiiiete ettt ettt 41
TMEFBAIIOONPAIT ..ottt ettt ettt ettt et e s bt et e saee e 41
TMEWINAOIAPAIT ...ttt et ettt st e bt e saneenaeas 41
TMEFDIAlOZOTAPALT ..ottt ettt e et e st e et e e saeeeaneeneeas 42
TMFCollapsiblePart, TMFSelectableCollapsiblePartcccccoieeiieviienieeiienieeieeeeeveeeee e 42
TSINGleCOMPONENECROOSETccvvieiiiieeiieeeiie et et e e e e et eesereeessaeeesbeesbaeesnseeesnseeensseas 42
TMultipleComponentCROOSETccceviieiiriiiiirienieie ettt ettt see e 43
TMEFTAMEPAIT ...ttt st ettt et sat e e e 43
TMEFGIadi@ntPartooouiiiiiiiieee ettt ettt e sttt e st e et esaneesaeas 43
TMFENOAERETEIENCEPAITviiiiiiiiiiecee e e e et e e s e e sabe e e saaeeeneaeas 44
TMEFRAAIOCTUSTET ...ceutiiniiiiiiieiie ettt et ettt ettt e sat e et eesat e e e enaees 44
TIMESCIOIPATT ...ttt ettt s bt et e st et esaeesabeenaeas 44
TMFSlider, TMFCircularSliderPart, TMFLinearSliderPartccccooeiieiiiieiiiiiiiececiieeee 45
TMESOIACOLOTPAIt ..ottt 45
TIMESPII3PAT ..ottt sttt et e st et et e et et e e st e beenteeseeneeeneenes 45
TMFCollapSibIELIStPAITcc.coiuiiiiiiiiiiee ettt 46
TIMEVECTOTPATIT ...ttt et et sttt et e e 46
TMFListPart, TMFRuledListPart, TMFStringListPartccccoooiieiiiiiiiiiieee e, 46
TMFEOSESCTEENPATT ..ottt sttt ettt st s 47
TMEPOPPEAPALT ..ottt ettt ettt e e beesteeeebaesseeesseensaeesbesnseesnas 47
TMERECIPAIT ..ottt ettt e st e et e s b e sabeeas 47
TMESLAtICTEXPATTiiiiiiiieiie ettt ettt et e st e et e e bt e enbeesaesnbeenseennnas 48
TMETEXIPOPUPPAILooiiiiiiiie ettt e e e s tee e s e e abeeeaaeeennneeenseeas 48
Interfaces supported by each Ul element (PArt)cccccceeevcvneiccscsnricsssnnncsssssssecsssssssssssssssssssssssseses 48

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page iv

Chapter 6 - Counted POINLETScceccvieeeeriiiiieeeiiiee e 51
Defining Classes that May Need to be Countedccccevvveeiecsssnneccsssnnnccsssssessssssssessssssssssssssssses 51
TMCCountedObject/ TMCSMPCountedODJEctcoeevuirieniiniiniiniieieeeereeeseee e 51

Using AddRef() and Release()ceeeouieriiiiiieiieeieeiieeie ettt 51
IMPIEMENtING CIEALEeeeviieiiiieiiie ettt ettt et e e et e e et eeetbeeeaaeesssaeesssaeessseeesnseeensseesnnes 53
Implementing a Counted Pointer Access Methodcoceviiiiiiiiiiiiiicceceece 53
Implementing QUEryInterface()cooveeeriieeiiieeiiee e 54
Helper Classes for Counted POINLETSc..ccccuiieriieeiiieeiiecie et 54
Example of TMCCountedGetHEIPETcoeeviiiiiiiiiiiriiiiiiiceceeee e 54
Example of TMCCountedCreateHEIPETcc.cccuieeiieiiiiiieiiieieeiecie et 55
TMCCountedPtr vs Interface POINETcccoiiiiiiiiiiiiiieie e 55
Two functions returning InterfacePtrcccoooiiiiiiiiii e 56

Never return @ COUNTEAPLTcociiiiiiiiii e 56

(05 (e 11 0T o) o <] o1 £ SRR 56

PN o4 (711101 H PSSR PSORUSTUPRRPIO 56

Chapter 7 - ULIIHIESuvvveeeeeeiiieee et e 59

Various Shell Utilities (ISHUTLEIES) cccovveeevueiseiniuinsiiiiiiiiisiisiinseictennteseessesssecssesssssssssssssssssees 59
Thread Utilities (IShTreadUtIlities)ccccocceeevvriiisriiiniissnicssnnicssnnicsssnecsssnesssnessssnessssscsssssssssssssnses 59
Component Utilities (IShComponentULIIItIes)ccceeceeeeveresssercsssnrcssnicssnnscssansssanssssssssssssssnsssssases 59
SMP Utilities (IShSMPULILIES) ...cccvuerieriiuenisiiisuiisiissiinseissnnsssissssisssessssnsssessssssssssssssssssssssssssssssasans 59
Action Utilities (IShACLIONMANAZEL)ccerverersricssnnecssnnesssnesssnnessssesssssessssnesssssessssssssssesssssssssssessnses 59
Menu Utilities (IShMenuULIIES) .ccccvveeieiirrniicscssnniessssnsiecssssnseesssssssscsssssssesssssssssssssssssssssssssssssssssssss 60
Part Utilities (IShPartULILIties) ...ccccciiccciiinrnsnnniiiccsssssssssnnssiccsssssssssnssssessssssssssssssssssss 60
Resource Utilities (IShReSOUIrCeULIlItIes)ccuveiersriiisnicssnncssnrcssnecssnncssnnicssnnecssseessseessssnesssssesanes 60
File Handling (IShFIIEULIILIES) ...cccovererrercsssnrcssnicssunisssnnisssanssssnssssasssssassssssssssssssssssssssssssssnsssssnssssnnss 60
L0 (e 11 0Tl 2 T (SRR 60
OPENING FILIES ..ottt ettt ettt b et e e 60
WOrking With STrEAMSieeiiiieiiiieiie et e e st e e eeaaeesnaeeeenseeeeneee 61
Personality Utilities (IShPersonality Utilities)cccccccececsssericssssnnnccscsnnsecsssnnncsssssssesssssssssssssssssssnns 61
Drag & Drop Utilities (IShDragAndDropULIItIes)cceveecrenssnensenssnncsnensncsssecsessssesssncssnessaees 61
Change Management (IChangeManager)ccccceeevrecssnnicsssrcsssanessssssssssssssssssssssssssssssssnsssssssssssnss 61
Clipboard Utilities (IMEFCHPDOArd)ccccvereerirniicssssnnicssssanrecssssssecsss 62
3D Utilities (I3DShULIIIES) ...ccovverirurerseriseinssnnssennsicssenssnsssnnsssnsssssssssessssssseases 62
Chapter 8 - MCCommon Referencescccoeevvveeeeeeeccvieeeeeeecnnee. 63
MCCOre INLEITACES ..ueeeeeneecssuencssnnecsnnecsnecssnecsssnessssnesssnssssseessssnesssssssssssssssssssssess 63
IMICF INEEITACES .ouverirurririnniessnnicsssnecssnnesssnessssncssssscssssesssssesssssesssssesssssssssssssssssssssssssssssssssessssssssssssssssns 63
User Interface FIEXIDIILYc.cccuieiiiiiiiiiieeiieece ettt enees 63
MCIMAZE INTETTACES ..eevreerinrricsicsnnicssssnnnecsssnseess 64
Chapter 9 - Failure Handlingccccccccoiiiiiiiiiiiieeeee, 65
Using the Failure Handlingcoovveieveeiincercsseicssnicssnnicssnnssssasssssssssssssssnes 65
GENEIAl TUILS ccoueeiiiniiiiitiiiitiinnteenteecsntecsntecsstessssecsssseesssssssssssssssnesssssessssesssssessssssssssssssssasssssassssses 65

©2001-2007 DAZ 3D, Inc. All rights reserved.

A first simple eXamplecoiiiiiiiiiiiiinsiiinniininiinnnnninntiiniiissiiessesssssesnes . 65
Initializing your local variables Properlyc..iiiiniinsnicnsnnicnsnncsssnissssnssssssesssssssssssessssssssnss 66
The Failure Handling Chaincccoveiiicninniicnsssnniccsssnnicssssssesssssssessssssssssssssssssans 67
Triggering a Failure yourself by using throw, ThrowlIfNil(), ThrowIfNoMem(), and
TREOWITEITOI() aeiicirrvnieiinsnriccsssaneecsssansecsssssssesssssssssssssasssssssssssssssssssasssssasssssssassssssssssssssssasssssssasssssssns 67
EXTOE COURS ununrrinriinnirininenisneecsseneisnncsssnncsssnecsssnecssanessssnsssssesssssesssssesssssessssssssssssssssesssssessssssssssassssans 68
Message parameter COAINGccceeervercrsnicssnnicsssnessssnessssnessssscssssscsssssssssssssssssssnss . 69
Failing SHENLY ..cuveiiriiiiniiiiiniinisnnnisnicnisnicssssicssnisssass 69
Recovering from a FaIlUureiiiinieiiiniinniicniinnnicnissnnicnsssssiesses 70
Chapter 10 - Multi-Threadingccccooeeieiiiiiiiiiieeeeeeeeeeeceee, 71
TWO types Of tRIEads. .ccueicvveiiireicisrinisnicssninssnnisssnncssssnssasssssnss 71
Extensions and multi-threadingccccevvveiicninnnnicnissniecsssnricssssnssscssssssssssssssessssssssssssssssssssssssses 71
Chapter 11 - DataBase OVEIrvIEWcccoeeeviiiiiiiieeeeeeeeeeecciinneeeen. 73
SCEIE eueiireiiniisiiisneisntissticsseisssissseessstesstsssasssseesssssssnsssassssessssssssssssessssessassssassssessssssssssssassssesssssssansssasens 73
L@ o) 101 RS 73
Scene Tree and Tree EICMENLScc.veieiiiiiiiiccicccee et et e e sebeeeaneas 73
ODJECE INSTANCES ..euvvievrieeiiieiieiiie et et et ertt e et etee et e eteeetteebeessaeesseessseenseesseesnseenseessseensaessseasseensnas 73
54 1 | £ SRS 73
{72131 15 2 SRS 74
GTOUPS wveeeneiieetiee ettt e ettt e et e ettt e ettt e e teeesateeeaatee e saeeensaeeansaeeansaeensseeansseeansseeanseeensseesnnsaesanseesnnseenssens 74
Master Groups VS PIIMITIVESccccuiiiiiieiiiieeiiieeciie et eette et e ereeeteeesaeeesaeeesnseeenaeesnsneesnsaeeennns 74
Co0rdinate SYStEISccccevveersrecsenssnesssnessnncsansssncsssesssnsssassssasssssssasssssssssasssnes 74
Global Coordinate SYSEIMcccuieriiiiiieiieeiieiie et et e ete et esaeebeestaeereesseesseeseessseeseessseenseensnas 74
Working Box Coordinate SYSIEIMccccuieeiiieeiiieeiieecieeeeiee et e ere e ree e s e e saeeesaaeesneeeensneeenns 75
Local Coordinate System (or Object Coordinate SyStem)coceevereereriienieneeiieneenieneeseenens 75
Screen Coordinate SYSTEIMcccuiieiiieeiiieeiieeeieeeeiteeeee et ee et e st ee st eesbaeeseseeesbeeesaseeennseeenseeas 76
The SCTEEN PIXELS SPACEvvieieiiieiiieeiiee ettt et e e et e e st e e e b eeessbeeesbeeessseesnaeeensaeensseesnseeas 78
GEOIMEITY aeevuerinenruensnncsannssncssanessnesssnsssnesssesssnssssesssasssssssssssssssssssssasssssssssesssssssassssassssssssssssassssasssssssases 79
Geometric data type: 32-bit floating point (float)ccceevieriiieiieriiieieecece e 79
UNIES SYSTEIM ...uviiiiiieiiiieeiiteciieeetee et e e rte e et eeetteeesteeessaeeessseeesseeessseeensseesssseesnseeessseeensseesnsseesnnes 79
Tree Elements Transformationcccceoiiiiiiiiieiiie et e e e as 79
More 0N the rOtation MALIIX: ...oc.eeiierierieeieriieie ettt ettt s ee et e sae et e et esbeeneesaeenee 80
GEOMECIIY DASICS ..vvveeerieeieiieiiieeeitieeetteesteeestteeestteeesaeessteeesssaeeasseeesseeessseesssseessseeessseeeasseeesseennseens 80
SUITACE POINT ..ottt e et e e e e e saae e e abeeeaseeenbaeesesaeeenneeas 80
SUIAce NOTIMALoueiiiiiiieiee ettt ettt sae e e saeenees 81
UV Space (Texture Coordinate SYSTEIM)ccccciieriiieeriiieeiiieeireeeieeeereeesaeeesaeeessseesssaeessseeesnnns 81
Parametric mapping - @ better SOIUtIONcocuiiiiiiiiiiiiiiee e 82
SRAQINE o.veeeiieie ettt ettt et e et e et e e steeebe e saeenbeeetaeesbeeaseeenbeesaeenbeenbaeenaeenneeseas 82
FaCEES ettt ettt et st e sab e et e s s 83
Interpolating in @ FACETcccuiiiiiiiieciieie ettt et eare e 83
BiICUDIC PALCRES ..ottt st st 84
Patch NOTIMALS ..ottt sttt 84
PatCh U,V SPACE ..ottt ettt ettt et e e b e enaeenbaen 85
To learn more about Bézier bicubic Patchescccoeoieviiiiiiiniiiieeeeeeeeee, 85

©2001-2007 DAZ 3D, Inc. All rights reserved.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Introduction Page 1

Introduction

This chapter introduces the main concepts of the Carrara SDK. It will help you in making the main technical choices
so you can have a smooth and exciting experience developing your 3D Components.

What is the Carrara SDK ?

An open architecture for 3D.

The SDK provides a way to extend the functionality of the application and add new features. It provides the tools and
the documentation to create plug-ins for Carrara.

Carrara is entirely based on a plug-in model. Each of the components of the application (Modeler, Primitives, Lights,
Renderers...) is implemented as a plug-in. This component architecture allow external developers to quickly add
functionality to the application.

Headers and library.

The SDK provides a set of the C++ headers as well as a library that allow you to build plug-ins that are compatible
with the API of Carrara. They also give you access to a wide range of utilities that makes it easier to write features for
a 3D application.

Samples.

The SDK provides many samples of code that you can use as a starting point for your plug-ins. Those samples are
detailed in the Cookbook. They provide good examples to understand how you can create your own extensions.

Documentation.

There are three different parts in the documentation of the SDK, each type answering a specific need of the 3D
Components developer:

o The Overview: This pdf provides an overview to the SDK and explains the major concepts you need to under-
stand to extend the functionality of Carrara. This is were you should start.

e The Cookbook: This pdf provides step-by-step descriptions of the various types of 3D Extensions that can be
built with the SDK.

o The Reference guide: The reference guide provides a documentation of all the classes that constitute the API of
Carrara.

MCSketch.

A resource Editor called MCSketch is provided with the SDK to help you create sophisticated user interfaces as
quickly as possible.
Supported Platforms and Compilers.

The supported platforms are Mac OS X (10.3.9 or later), Windows 98, Windows 2000, Windows XP and Windows
Vista. The supported compilers are Xcode 2.4 or later on the Macintosh, and Microsoft Visual C++ 2005 or later on
Windows.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 2 Introduction

What’s New in Carrara 6 ?

This section describes the changes that were made to the SDK from version 5 to version 6. If you are porting plug-ins
from a previous version, it is important that you read carefully this chapter. It might also give you ideas for new plug-
ins... If you are new to the SDK, you can skip this section for now and come back to it later.

Unicode support

The strings stored in classes derived from TMCString are all using the UTF8 encoding. Use TMCWideString if you
need to handle strings with 16 bits per character.

Non Linear Animation

The main interfaces dealing with NLA can be found in the files : 3DShAttributesSet.h,
I3DShAttributesSetControler.h, I3DExAttributesSetControler.h, I3DExClip.h, NLAInterfaces.h. You can even create
new external controlers.

Large scenes support

The magnitude of the scene (I3DShScene), can be accessed by using GetMagnitude and SetMagnitude. Cameras,
lights and primitives can implement GetScalingFactor and SetScalingFactor when they need to change their behavior
or default values depending on the current magnitude.

Multiple selection

In IExDataExchanger, HandleEvent has been deprecated and should be replaced by SimpleHandleEvent or
GetUIHandler in components that can be displayed as a multiple selection in the properties (like light or camera
components).

In IMFExPart, SetValue is now called SetValueLowLevel. The changes in IMFPart are unlikely to affect you.

What’s New in Carrara 5 ?

This section describes the changes that were made to the SDK from version 4 to version 5. If you are porting plug-ins
from a previous version, it is important that you read carefully this chapter. It might also give you ideas for new plug-
ins... If you are new to the SDK, you can skip this section for now and come back to it later.

Change in resource files

The use of resource files has been changed to be able to make localization much easier. The DTA files that were used
before are still generated but have to be separated between a DAT file containing the resources common to all
languages and a TXT file containing the localized strings. To separate your DTA files use the Resextracter in the
Tools folder.

Once you have generated the DAT and TXT files you can create other TXT files to localize your plug-in. For instance
your myplugin.dta file must be first separated in myplugin.dat and myplugin.txt, then you can translate the latter in
french to mypluginFR.txt.

Scene commands

The scene commands resources have been modified to enable changement of keyboard shortcuts. For each scene
command you need to add a semd resource in your .R file:

resource 'scmd' (ResourceldOfYourSceneCommandComponent)

{

©2001-2007 DAZ 3D, Inc. All rights reserved.

Introduction

Page 3

bi

Ghost menu

YourActionNumber,
defaultMenu,
{
'3Dvw',// 3D View room
'Stry',// Storyboard room
//... and other rooms where you want the scene commands enable
b
kNoStrings,
kDefaultName,
kEditBindingGrouplD,
{
kDefaultID, kDefaultName, 's', kShift, kCtrl, kNoAlt, kAnyPlatform;
// the default keybord shortcut will be Shift + Ctrl + S
I

k3DViewBindingContextID

The ghost menu resource has changed and is now located in the .R file and not in the .RSR Here is how you should
translate your old resources:

{

}

TblE

{

irow 0
icol 0
ires 16100
tool 9500
Titl "Pen"
Actn 9500

TblE

irow 0
icol 1
ires 16100
tool 9503
Titl "Add"
Actn 9503

is now in the .r file as:

resource 'ghmn' (128, "My Modeler Ghost Menu'")

{

0, 0, 16100, 9500, "Pen", 9500,
0, 1, 16100, 9503, "Add", 9503,

Tree chooser dialog

To reference another object, light or camera you can still use its name but you can also use the new tree chooser
dialog that will let the user pick a tree or a list of trees. These trees are then referenced by their Id and not by their
name. This can be very helpful if users change their objects names quite often.

To see how to use the tree chooser dialog, take a look to the Behavior sample.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 4 Introduction

Class Id definition

We have made a slight change of the way you can define a class id. Use:
const MCGUID CLSID TreePrim (R_CLSID TreePrim) ;
instead of the old:

const MCGUID CLSID TreePrim = {R CLSID TreePrim};

Lighting Models

The default lighting implementation used to be located in TBasicShader. While this was convenient, it was also
causing some problems. For instance, if we fixed a bug in its implementation, all the shaders needed to be
recompiled. For this reason, the default lighting model implementation is now in the application. This implies a few
changes to your code:

1 If you implemented ShadeAndLight before, you need to make sure that you return MC_S_OK to let the shell know
that you are overriding completely the lighting model. You will note that shadeAndLight takes a pointer to a
I3DShLightingModel as a parameter. You can use the methods of this interface to call default implementations of the
reflections, transparency, global illumination.

2 If you were overriding GetDirectLighting, GetReflections,... you can still do that but you have to let the application
know by returning the proper combination of constant in GetlmplementedOutput (for instance
kUseCalculateDirectLighting).

If you have any problem, feel free to contact us directly.

Change in interfaces

We have not report here all the change that have been done in the various interfaces. Usually if you have not seen the
change you will get a compilation error. However, when you are using basic implementations the error can be hidden
and your function will not be called. Do not forget to check the signature of your functions if something is not
working.

How the whole thing works

Shell and Extensions

The Application is the client of the different services provided by the 3D Components. Because the 3D Components
add features, they are often called Extensions, or plug-ins.

The Application is in charge of organizing the data flow between the Components, and it also offers a set of services
to the 3D Components to allow then to interact with its own internal data (like the 3D Database). The Application is
called the Shell, which is a better and more generic term.

COM dynamic linking

The communication between the 3D Shell and the 3D Components is done by using the Component Object Model
(COM).

The choice was made to use the COM because COM is a very widely spread industry standard (COM is the low-level
layer on which OLE is built), and is actively promoted by major industry players. So if you are already familiar with
OLE, you will find it easier to get started with this documentation. COM offers a nice and clean C++-like interfacing,
and it is highly recommended that you read the excellent book “Inside OLE 2” by Kraig Brockschmidt from
Microsoft Press to learn everything about it.

COM users should read , “Using DAZ’s COM Dynamic Linking” chapter to learn all details about each technique

©2001-2007 DAZ 3D, Inc. All rights reserved.

Introduction Page 5

and how to implement them.

Identifying Components at startup: Auto Plug-And-Play

When the 3D Shell is launched, it first identifies which 3D Components are available. To do this, it looks in its
Extensions directory and in all sub-directories of the Extensions directory.

All files with the “.mcx” extension are considered as Components.

Please note that there is nothing to register anywhere in the operating system to allow the identification of the
Component. It is completely automatic. Even if you develop a Windows extension, it is not necessary to register
your Component in the Windows Registry Database. This allows a true Plug-And-Play installation of
Components. No problem for uninstalling, no full path names issues, no conflicts between different versions or
languages, etc.

For each Component file found, the 3D Shell tries to find the corresponding resources. The resources are located in a
“.dta” file next to the Component file.

Now that the resources are found, the 3D Shell looks for all ‘COMP’ resources in the file (you can put several
Components in the same file). The ‘COMP’ resource is the key to each Component. It identifies the name of the
Component, the API version number it is based on, his own version number, and most important of all, its Family ID
and its Class ID.

Family ID, Class ID...

Each Component belongs to a Family. The Component Family defines the kind of Component the 3D Shell is dealing
with: a Shader, a Camera, an Export Filter, etc. All the items in bold in the “3D Pipeline” chart in the Cookbook are
the available Families.

Each Family has a 4 letter code, its Family ID. For example, the Family ID for Shaders is ‘shdr’. Your Component
must belong to an existing Family, otherwise the 3D Shell will not know what to do with it. Family IDs are described
for each Component in the Cookbook and Reference chapters, and there is a general table in “The *COMP’ resource”
on page 11.

In the COM terminology, a Family is strictly equivalent to an Interface. Interfaces are pure virtual classes inheriting
from IMCUnknown (basically a COM definition). The Interface files are the I*.h headers.

Then Each Component has a Class ID. Its Class ID describes uniquely your Component. For example, in the Shader
Family, there are different classes of shaders: the Checker Shader, the Marble Shader, the Wood Shader, etc. Each of
this shader has a unique Class ID. Its Class ID is the Component’s key to its data and instantiation process. This is
how your Component will be able to store its private data in a Carrara file and retrieve it later.

For this reason, if you intend to distribute your Component outside, even as a Freeware or Shareware, it is vital that
you register your Class ID with DAZ to ensure that it will be unique. This Class ID will then be yours forever.
This registration process is done by e-mail or fax, and it is free. See “Registering your Class ID with DAZ” on

page 24 to learn how to register Class IDs.

In the COM terminology, a Class is strictly equivalent to a Class.

...And Instances

So far, this is all the 3D Shell does at startup. It simply identifies all available Components for later use. No
Component code has been loaded or executed.

Then comes the time of instantiation. For example, a file is read, and it contains a 3D Object with a Marble Shader.
The 3D Shell does not know anything about Marble Shaders. It just gets the Family ID and the Class ID. Looking up
in its Component Class directory, it instantiated a Marble shader by asking the dll / shared library implementing it to
create one. The Shell just keeps an anonymous pointer on the Component Instance, and this will be good enough to
communicate with it: reading/writing its data, handling the user interface, executing it, etc. This will be explained in
detail in the sections that follow.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 6 Introduction

Note that each instance has its own data values. For example, if another object in the file has another Marble texture
on it, then a new instance will be created in order to store the parameters of this second Marble texture. This is how
you can have several Marble textures with different vein spacing on different objects: they are different instances of
the same Marble Class.

In the COM terminology, an Instance is strictly equivalent to an Instance (sorry COM-savvy readers, you got the
point already...).

Communicating between the 3D Shell and the 3D Component

Once the Component has been instanciated, the 3D Shell will need to access the different Component services (i.e.
routines). Think of the 3D Shell as the orchestra director. The 3D Shell will call your Component routines when
needed. “Do not call us, you will be called” could be the 3D Shell motto.

However, there are times when your Component needs additional services from the 3D Shell. For example, a 3D
Import Filter will have to be able to create and manipulate data structures in the 3D Shell Database. Therefore, the 3D
Shell offers a complete API to do all kind of things. When a routine of your Extension is called, you can then call
back the Shell to complete your job.

Component User Interface and Parameter Maps (PMap)

Often, the 3D Shell will want to show to the user the Component’s User Interface so its parameters can be set before
executing. The 3D Shell has unique way to do this so the user interface of your Component is seamlessly integrated in
the Shell user interface, providing a consistent and integrated experience to the user.

The key to this Ul integration is the ‘PMap’ resource. This resource is also the key to saving and reloading the
Component’s data.

The ‘PMap’ resource describes a table called the Data Extension Map. During the initialization process, the
Component told the Shell where its “public data” was stored: this is called the Extension Data Buffer, and it is
located in the extension’s own RAM space. It is a record of the Component parameters (like the vein spacing values
and the veins colors of the Marble Shader). The 3D Shell merely has an anonymous pointer on the Extension Data
Buffer. The Data Extension Map will help the 3D Shell identifying the types and addresses of each data in the
Extension Data Buffer, and build the relationship with the user interface.

Put simply, the Data Extension Map has two values for each entry: an ID to identify the user interface element
(button, slider, etc.), and a type to identify the kind of data store in the Extension Data Buffer (Boolean, fixed, long,
etc.).

This way, when the user changes something like the state of a check box, the Shell is able to compute the address of
the corresponding item in the Data Buffer, and change it directly. Then it calls the Component and tells it that its data
have been changed, so that the Component can react and update any internal pre-processed data.

Data Map Data Buffer
o Inverted | Boolean —f——pud Boolcan flnverted
Softness [= 0.0 —=] Real32 —4—] Rcal3? Softness
Amount[EE— H(0.55 ———] Reald2 —f—®] Real3? {Amount
e =l Real32 —f—®= Real32 Vanance

Note that you do not have to write any code to handle your user interface. The Shell reads the resources describing
your user interface from your Component file, and takes care of everything: it reacts when the user clicks on buttons,
sliders, etc. because it knows about all these user interface elements.

The other advantage of this mapping system of the 3D Component public data is that it provides the 3D Shell with a
simple way to save the Component data in a file and retrieve it later without any knowledge of the Component’s
purpose in life. To store the Component data in the file, the Shell just writes the data ID and the value, and that’s it.
Later, after the Component is instanciated, the 3D Shell will write back this data in the Extension Data Buffer.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Introduction Page 7

You will find details on how to build the user interface itself (using the MCSketch, the user interface building tool)
and how to compile a .dta file in the chapters that follow.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 8 Introduction

©2001-2007 DAZ 3D, Inc. All rights reserved.

Creating an Extension Page 9

Creating an Extension

An extension is a shared library that defines components (COM Objects) that implement new functionality. In
Carrara, every plug-in is composed of at least three files:

o The shared library (or dll): This is the executable of your extension. It has a ".mex" extension.

o The resource file: This file contains the definition of the components contained in your plug-in. It has a ".dat"
extension.

o The localized strings files: These files contains the strings of your component that should be localized. For each
language you can create a file. There should be at least on file with a ".txt" extension but you can add a french file
ending with "FR.txt" or other languages. Note that if you do not had a file for the current language then Carrara
will automatically default to the English file.

All those files should have the same name (except for the language suffix). So for instance, if you create a plug-in
called MyPlugin, the three files should be named respectively: MyPlugin.mcx and MyPlugin.dat and MyPlugin.txt.

Those files should be copied in the Extension subfolder of the Carrara folder so that Carrara recognizes them as plug-
ins.

The following text explains in more details how you can create those files:

The resource files (.dat and .txt)

The resource files contains the definition of the components that are implemented in your plug-in as well as all the
resources that are used for the user interface of your plug-in (dialogs, strings...)

For each component implemented in your plug-in, you have to create a’COMP’ resource. The ’‘COMP’ specifies the
type of extension (Family) and its name. In addition to the COMP resource, you have to create the “GUID” resource
to tell the Shell that the extension is COM and to give the interface ID (IID) of the object and its class ID (CLSID).

Additionally you can declare a 'PMAP’ resource to define the parameters of your component. You can also create a
’Node’ resource with MCSketch which will be used as the user interface of your component.

All this resources should use the same Resource ID (the number that identifies the resource) so that the shell knows
they belong to the same component.

Building the resource file

The resource file is built using a resource compiler. It takes as input two types of files:

e The .r files are text files that contain C like declaration of resources. You can edit them with an text editor.
e The .rsr files are actually compiled resource file that the resource compiler will merge into the resource file.
You can create them with MCSketch.

On Windows:

Resource files (also called data files or .dta files) are built by compiling a .r file that contains the list of resources
described in a text format. This format is the same as the Rez format defined by Apple Computer and used on the
Macintosh. The result is a binary file that is called a resource file.

Text .r files can also include other (already compiled) resource files to build a more complex resource file. Some
tools, like MCSketch, the Ul builder provided with Carrara, builds a resource file that can be used with a resource
compiler.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 10 Creating an Extension

MCSketch

MyExtensionOthers.rsr

Rez.exe -

MyExtension.r MyExXtension.dta

The Rez compiler can be found in the QuickTime toolkit on Apple Web site.
Steps to set-up the Rez.exe Compiler on Windows:

1. We suggest you use Rez, an Apple version of the Macintosh resource compiler, distributed as part of
Apple’s QuickTime SDK.

2. So go to http://developer.apple.com/quicktime/ and download the QuickTime SDK for Windows.

(After downloading Rez you should get a folder (~8Meg) which has 5 sub-folders: CIncludes, Compo-

nentIncludes, Libraries, RIncludes, and Tools.) We suggest you make this folder SDK/Tools/Rez, then

you do not need to modify the BuildDTA.bat file.

Create an empty SysTypes.r file in QT RlIncludes directory that was part of the Rez download.

4. Go into the SDK/Build/BuildDTA.bat file and make sure it uses the correct path to rez for your
machine. If you put Rez where we suggest, this step is unnecessary.

(%)

An alternative solution is to compile the *.dta files on a Macintosh and copy them on your PC.

When you have created your .dta files, you have to separate them in .dat and .txt files. You can use for that the
ResExtracter located in the folder SDK/Tools/ResExtracter. If you try to build the samples with MS Visual Studio, a
script extracts automatically the resources for you.

On MacOS

The process on MacOS is very similar to Windows, and Rez is part of the developer tools.

When you have created your .dta files, you have to separate them in .dat and .txt files. You can use for that the
ResExtracter located in the folder SDK/Tools/ResExtracter. If you try to build the samples with XCode, a script
extracts automatically the resources for you.

Extracting the localized strings from .dta

To separate the .dta file in a .dat file and a .txt file use the ResExtracter in the folder SDK/Tools/ResExtracter.
For instance, to extract the strings from a file named myExtension.dta, you type:

ResExtracter myExtension.dta

This will generate two files: myExtension.dat and myExtension.txt

Those two files are the ones that should be placed into the extension folder next to the executable (.mex). The file
myExtension.txt contains all the strings that needs to be translated for a foreign version (for example in French). To
create a localized version of your plugin in French, simply make a copy of this file named myExtensionFR.txt and
translate the strings in French.

FR is the language code for French. Other languages will use other language code (for instance GE for german, JP for
Japanese).

©2001-2007 DAZ 3D, Inc. All rights reserved.

Creating an Extension Page 11

The >’COMP’ resource

The resource “COMP” describes the type of extension and some additional information.

Here is an example of a ’"COMP’ declaration:

resource ‘COMP’ (128) // resource ID = 128
{
‘shdr’, // type of extension, the family name
‘COch', // Class ID, to identify your extension in the family
"Checker", // Name of your extension, it will appears in the Shell to
// describe and select your object
"COM Examples", // Sub Family Name, for a shader,

// it will create a new submenu
// called "COM Examples" in the menu of the Shader Editor

1, // Version of your component

"i.on, // Version String

"My Comments", // Comments

kRDAPIVersion // API Version the Extension is based on

!
The fields in a COMP resource are:

e Family ID : It is a four characters identifier that specifies the kind (family) of component (for instance it could
be a shader or a final renderer)

e Class ID : This four characters identifier identifies the component in the family. Note that it should be unique
within its family (class IDs all in lower case are reserved for DAZ use). You should register your components with
DAZ to make sure the Class ID you choose does not conflict with another one.

e Component name: This is the name of your component in the user interface of Carrara. It will appear in the
menu where the user can select your component.

¢ SubFamily name: This is the name of the subfamily. It is sometimes used to create submenus (for instance for
shaders). If the subfamily is “Hidden” then the component is not displayed in the User Interface.

¢ Version of the Component: This number is used for component versioning. This way you can still read previ-
ous version of component by providing a different component for each version. If there is only one version of
your component, the component version should be 1.

e Version String: This string is not used at this time.

e Comments: This string is not used at the time

o API Version: use kRDAPIVersion to be compatible with the current version of the SDK

Attention: the version information of the ’"COMP’ resource has changed in version 4

Here is the list of Extension Family ID and the corresponding COM IID for each type of Extension.

Table 1: Family ID and Interfaces of Carrara

Family Family ID COM IID
Ambient Light ambi I3DExAmbientLight
Animation Method amet I3DExAnimationMethod
Atmospheric shader atmo I3DExAtmosphericShader
Attached generic data data I3DExDataComponent
Backdrop drop I3DExBackdrop
Background shader back I3DExBackground
Camera transformation came I3dExCamera
ColorPickers pick I2DExColorPicker

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 12

Creating an Extension

Table 1: Family ID and Interfaces of Carrara

Family Family ID COM IID
Constraints link I3DExConstraint
DropAreas drpA IMFExDropArea
DropCandidates drpC IMFExDropCandidates
Export 3Dou I3DExExportFilter
External Module modu I3DExModule
External Part part IMFExPart
External List View part IMFExListPart
Final Renderer frnd I3DExFinalRenderer
Gel 'gel ' I3DExLightsourceGel
ICC Processor iccp I2DExICCProcessor
Import 3Din I3DExImportFilter
Interactive Renderer RndB I3DExRendererBox
Light lite I3DExLightsource
Modifiers modi I3DExModifier
Post Render Filter post I3DExPostRenderer
Primitive prim I3DExGeometricPrimitive
Reflection Render Features fleF I3DExReflectionFeature
Refraction/Transparency Render Features fraF I3DExRefractionFeature
Registerers regi [ExRegisterer
Scene Modifiers smod I3DExModifier
Scene Commands (Scene Operations) scmd I3DExSceneCommand
Shader shdr I3DExShader
Shadow Render Features shdF I3DExShadowFeature
Terrain Filter tfil I3DExTerrainFilter
Tweener twee I3DExTweener
Volumetric Effects Volu I3DExVolumetricEffect

The GUID’ resource

GUID stands for Globally Unique IDentifier, and is a 128-bit (16-byte) structure that uniquely identifies an interface.

When you create a COM object, you need to also create an unique GUID. To tell the Shell that your extension can be
called with the COM mechanism, you have to create a GUID resource that contains the IID (Interface ID) and the
CLSID (Class ID) of the COM object.

Microsoft provides two utilities: UUIDGEN.EXE (command-line) and GUIDGEN.EXE (a Ul-based version of the

©2001-2007 DAZ 3D, Inc. All rights reserved.

Creating an Extension Page 13

same application), that generate unique GUIDs. MacOS users can use "Create GUID.ppc", a similar Microsoft utility.
You create the GUID declaration resource in the .r file associated with your component.
Here is an example of a "GUID’ declaration:
resource 'GUID' (128)
{
{
R IID I3DExModifier,
R CLSID_ ExBarycenter

}i

The definitions of R_TID I3DExModifier and R_CLSID ExBarycenter are usually stored in a.h file that is
shared by the .r file and the .cpp files (it is just a convenience to avoid duplicating definitions). See the toolkit
samples for an illustration of this little trick.

The ’PMap’ resource

A resource “PMap” is used to define all parameters your extension needs to save and restore.

Usually, they are user interface parameters, but they can be purely internal data which your extension needs to have
saved so that it can restore its state from a file. For more information on PMaps and how they relate to your user
interface, refer to “Auto PMap” on page 29.

Here is an example of a ’PMap’ declaration:

resource 'PMap' (128)
'axis', 'in32',noFlags, "Axis","",
'prm2', 're32',interpolate, "Parameter 2", "",
'prm3', 're32',interpolate, "Parameter 3", "",

In the parameter map, you must provide the following information for each parameter:

o A four character identifier (for example axis’). This ID is used to identify the parameter. It is also used to estab-
lish the relationship between a widget in the User Interface and the parameter (the ID of the part that edits this
parameter should be the same as the ID of the parameter).

e A four character identifier (for example ’in32’) that identifies the type of the parameter.

o A flag (interpolate means that the parameter is animated)

o The name of the parameter (this name is displayed in the hierarchy if the parameter is animated)

e An optional string that contains that describes the parameter.

Here is a list of the types that can be used in ’PMap’ resources:

Table 2: Types used in PMap

C++ Type Keyword Comments
Boolean bool = unsigned char.
short, uint16, int16 inl6
long, uint32, int32 in32
float, real, real32 re32 Single precision floating point

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 14 Creating an Extension

Table 2: Types used in PMap

C++ Type Keyword Comments
double, real64 re64 Double precision floating point
TMCColorRGBA colo color
TColorRGB214 colF Fixed color 2.14
TMCGradient grad Color grandient
TMCRect rect 2D Rectangle
TMCPoint poit 2D Point
TMCString255 s255 255 characters string
TMCDynamicString Dstr Dynamic string (unlimited length)
TVector2 vec2 2D vector
TVector3 vec3 3D vector
TVector3 dire Direction parameter
TMatrix33 mx33 3 x 3 matrix
TSingleCompo- Component Chooser (allows the selection/creation
nentChooser comp of a component of one or more Families)
TMultipleCompo- cmp# Multiple Component Chooser (allows the selec-
nentChooser tion/creation of one or more Families)
ActionNumber actn Same as an int32
IMCUnknown iunk Data is an anonymous IMCUnknown pointer

For a list of general PMap types, go to Common/PMapTypes.h.
Shaders and PMaps

PMaps for shaders have a specific feature that allows reusing the previous values of a shader when switching to
another one. If some entries of the new PMap have the same IDs as some entries of the previous PMap, then the
values are copied. This is just a convenience for the user, and is implemented only in the Shader Editor.

The executable file (.mcx)

Build the executable

For more information on how to build the shared library, see , “Platforms and Compilers issues”

Entry Points

Every plug-in for Carrara should have the following entry points:

o MCDIIGetClassObject(): standard COM entry, used by the Shell to ask your code to instantiate your Extension
through a Class Factory

©2001-2007 DAZ 3D, Inc. All rights reserved.

Creating an Extension Page 15

e MCDIICanUnloadNow(): standard COM entry, not used in Carrara

e MCDIIInit(): low-level initialization entry, used for memory allocation initialization, and other utilities initial-
ization of the libraries.

e MCDIICleanUp(): counterpart of MCDIIInit(), used for deallocation when unloading the DLL

o MCDIlInitExceptionTranslator(): Failure Handling initialization

e MCDIICleanUpExceptionTranslator(): Failure Handling clean-up

The library provided in the Carrara SDK already implements these calls, so you don’t have to implement any of
those. However it is important that your project properly exports them (on Windows this is done by including a
.def file in your project) otherwise your plug-in will not work. The actual routines that you will have to implement are
the following:

o Extension3DInit is called when your plug-in is first loaded in memory (usually the first time one of the compo-
nent defined in your plug-in is used). You can use this call to initialize global structures.
void Extension3DInit (IMCUnknown* utilities)

{
}

o Extension3DCleanup is called when your plug-in is unloaded from memory (usually when the application is
closed). You can use it to delete global structures for your extension.
void Extension3DCleanup ()

{
}

e MakeCOMODbject is called to create the components that your plug-in defines.

// Perform your dll initialization here

// Perform any necessary clean-up here

To instantiate your extension in MakeCOMObject, using a simple new command:

TBasicUnknown* MakeCOMObject (const MCCLSID& classID)

{
if (classID == CLSID MyExtension)
return new TMyExtension;

return NULL;

}

Your extension should always inherit more or less indirectly from TBasicUnknown.

The Component Class

Each component in your extension is implemented by a C++ class. This class implements one or several COM
interfaces. For example, a shader will always implement I3DExShader which is the interface for the shader family.
Additionally it could implement IExStreamlO if it needed to save extra data that are not stored in its parameter map.

To make it easier to get started, a number of “basic” classes that provide a default implementation of each family of
component have been provided. These classes have a name that starts with TBasic (for example TBasicShader or
TBasicFinalRenderer). You should derive your object from one of those classes if there is one available for the type
of component you are implementing. In any case, your class should always derive from TBasicDataExchanger
(either directly or through one of the Basic class) that provides the implementation for a basic component class.

So the declaration of your class should look this:

class MyComponent : public TBasicShader

public:
static const MCGUID sClassID;

MyComponent () ;
~MyComponent () ;

STANDARD RELEASE;

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 16 Creating an Extension

virtual void* MCCOMAPI GetExtensionDataBuffer() ;
Vi
If you do not want to use the basic class (or if there is not one available), you could declare your class as follows:

class MyComponent : public TBasicDataExchanger,public I3DExShader

{

public:
static const MCGUID sClassID;

MyComponent () ;
~MyComponent () ;

MCCOMErr MCCOMAPI QueryInterface (const MCIID& riid, void** ppvObj) ;
uint32 MCCOMAPI AddRef () ;
STANDARD RELEASE;

virtual void* MCCOMAPI GetExtensionDataBuffer() ;
Vi
A few remarks about the declaration of the class:

The field sClassID is used to store the ClassID of your extension so that you can use it in MakeCOMODbject.

Even if you derive from the basic class, you still need to implement STANDARD RELEASE. The reason for this are
a little bit complicated so we will ignore them for now. The thing to remember is that you should always implement
STANDARD_ RELEASE at the bottom for your inheritance tree (in this case, your component).

TBasicUnknown

When you create a component you should implement the 3 methods of IMCUnknown: AddRef, Release and
QuerylInterface since your object derives from TBasicUnknown

Usually those methods are implemented by the basic class (except for Release that you should always implement in
your class). However it is important to understand how they work so here is how to implement each of them:

AddRef()
You should simply call the parent of your class. TBasicUnknown provides the proper implementation for AddRef.

uint32 MyComponent: :AddRef ()

{
}

return TBasicDataExchanger: :AddRef () ;

Release()
You always use the STANDARD RELEASE macro.
QuerylInterface()

QuerylInterface needs to return the proper interface if it is implemented by your component. The basic class provides
a default implementation for the interfaces it derives from.

MCComErr MyComponent::QueryInterface(const MCIID& riid, void** ppvObj)

{

if (MCIsEqualIID(riid, IID_I3DExShader))

{

TMCCountedGetHelper<I3DExShader> result (ppvObj) ;
result = static cast<I3DExShader*s>(this) ;
return MC_ S OK;

}

return TBasicDataExchanger: :QueryInterface (riid, ppvObj) ;

©2001-2007 DAZ 3D, Inc. All rights reserved.

Creating an Extension Page 17

User Interface

Carrara makes it quick and easy to provide a simple user interface for your component.

The >Node’ resource.

For most components Carrara uses a "Node’ resource for the user interface. A "Node’ resource contains a Node Part.

You can create such a resource with MCSketch which is provided with the SDK. The resource ID of the resource
should be the same as the resource ID of the "COMP’ resource.

To change the resource ID in MCSketch:

o Select the resource.
o Select Resource Info from the Edit menu (or type Ctrl+I)
e Change the resource ID in the dialog.

If you want to use a different Node Part (for instance to share a node part between several component), you can
implement TBasicDataExchanger::GetResID() and return the ID of the resource ID that you can to use.

In the "NODE’ resource you can add various controls (sliders, buttons, check boxes...). Each control has a Part ID
(the Part ID can be edited in the properties drawer on the right). Set the Part ID of each control to the four character
ID of the parameter in the parameter map (see “The "PMap’ resource” on page 13). The Shell will automatically map
the value of the control with the value of the parameter and create key frames if necessary.

The Pmap buffer

Once you have set up the node part and the "Pmap’ resource, there is only one last thing that is missing: your class
needs to access the value of the parameter. For this purpose, your component must provide a buffer to store the value
of its parameters at the current time.

This buffer must match exactly the ’Pmap’ resource. It is important to be careful that the fields have exactly the
same type and are exactly in the same order as in the ’Pmap’ resource.

Here is an example:

struct myPMAP

{

int32 fAxis;
real fParameter2;
real fParameter3;

}i

corresponds to the following *’PMap’ resource:

resource 'PMap' (128)
'axis', 'in32',noFlags, "Axis","",
'prm2', 're32',interpolate, "Parameter 2","",
'prm3', 're32',interpolate, "Parameter 3", "",

}
bi

To let the Shell know, where the buffer is located, you need to implement GetExtensionDataBuffer () inyour
class:

virtual void* MCCOMAPI GetExtensionDataBuffer ()

{
}

That is all you need to know to create a simple user interface for your component.

return &fMyPmap;

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 18 Creating an Extension

For more information on parameter maps, see the documentation of TBasicDataExchanger.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Using DAZ’s COM Dynamic Linking Page 19

Using DAZ’s COM Dynamic Linking

This chapter describes in more detail COM Dynamic Linking supported in Carrara.

Before reading this chapter, it is highly recommended to read the Introduction chapter, especially the section “How
the whole thing works” on page 4.

About COM

COM (Component Objects Model) is the low-level dynamic linking system on which OLE is built. It is a very widely
spread industry standard, and is actively promoted by major industry players. So if you are already familiar with
OLE, you will find it easy to be started with this documentation. COM offers a nice and clean C++ like interfacing.

The best reference for COM is “Inside COM” by Dale Rogerson from Microsoft Press (ISBN 1-57231-349-8). The
first chapters of “Inside OLE 2” by Kraig Brockschmidt from Microsoft Press are also a good introduction (ISBN 1-
55615-618-9). You can also find all the necessary information in any edition of the MSDN (Microsoft Developers
Network) CDs. On the Web, look at http://www.microsoft.com/com/.

Component Registration Process

Component registration provides true auto-plug and play installation of components. Simply drop component files in
the correct folder and run. You don’t need to use the Windows registry or full-path names. There is no conflict
between versions or languages (due to being based on COM).

Each component has one COMP and one GUID resource associated with it. Each extension file (.mcx file) can have
more than one component by defining multiple COMP and GUID resources. To learn more about these resources
refer to “The resource files (.dat and .txt)” on page 9.

How the Component Server Works

At start-up the Component Server identifies components in the application directory and below. It looks for .mex
extension. For each extension file found, it looks for a resource file with the .dta suffix. For each of these files, it
looks for more components; it identifies components by a ‘COMP’ resource and adds the component to a list. There
is one list of components for each family.

In additional to the general component registration resources, each type of component may have its own specific
resources. For example, a module has a ‘Modu’ resource that adds on functionality that modules can do. To learn
more, refer to the chapter on family-specific resources in the Cookbook.

How the Application Calls your Extension

“Simple” Components are extensions that do not call back into the Shell or application to perform their duties. Such
extensions are typically Primitives, Shaders, Light sources, Ambient lights, Gels, Atmospheric Shaders, Background
and Backdrop Shaders, and Cameras.

Extension Entry Points

Your COM Extension has these entry points:

o MCDIIGetClassObject(): standard COM entry, used by the Shell to ask your code to instanciate your Exten-
sion through a Class Factory

e MCDIICanUnloadNow(): standard COM entry, not used in Carrara

o MCDIlInit(): low-level intialization entry, used for memory allocation inits, and other utilities intialization of
the libraries.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 20 Using DAZ’s COM Dynamic Linking

e MCDIICleanUp(): counterpart of MCDIIInit(), used for deallocation when unloading the DLL
o MCDIlInitExceptionTranslator(): Failure Handling initialization
e MCDIICleanUpExceptionTranslator(): Failure Handling clean-up

The library provided in the Carrara SDK already implements these calls, so you won’t have to worry too much about
them (just make sure that they are exported properly by your DLL or Shared Library). The library also already
implements the Class Factory scheme and everything, so the actual routines that you will have to implement are
these:

// Initialization routine:

void Extension3DInit (IMCUnknown* utilities) ;

// Clean-up routine:
void Extension3DCleanup () ;

// Instantiation routine:
TBasicUnknown* MakeCOMObject (const MCCLSID& classID) ;

That’s it. The library takes care of the rest for you.

Extension3DInit is called when your plug-in is first loaded in memory (usually the first time one of the component
defined in your plug-in is used). You can use this call to initialize global structures.

Extension3DCleanup is called when your plug-in is unloaded from memory (usually when the application is
closed). You can use it to delete global structures for your extension.

MakeCOMODbject is called to create the components that your plug-in defines.
Instantiate your extension in MakeCOMObject, using a simple new command:

TBasicUnknown* MakeCOMObject (const MCCLSID& classID)

{

if (classID == CLSID MyExtension)
return new TMyExtension;

else
return NULL;

Your extension should always inherit more or less indirectly from TBasicUnknown (see the discussion about the
TBasic* types later on).

Minimal resources

Make sure you choose a CLSID and that you copy its value in the GUID resource (see “The *GUID’ resource” on
page 12) for more details. Make sure that all your COMP, PMap, GUID, Node, etc. resources have the same ID
number and that this number is the one returned by GetResID. You still need to choose a 4-letters Class ID and put it
in your COMP resource.

And, once again, Windows programmers do not need to enter their IID and CLSID in the Windows Registry
Database. Simply give your Component the .MCX suffix, and put it in the Extensions directory (or in any sub-
directory of the Extensions directory). Carrara will find it automatically.

Use the samples of the Carrara SDK as a framework to start your own extensions.

How your Extension Calls into the Application

Some extensions need to call back the Shell. For example, an Import Filter may need to create 3D objects and put
them in the scene.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Using DAZ’s COM Dynamic Linking Page 21

There can be three types of situations:

o A Shell object pointer is passed to you as a parameter of one of your Extension procedures.
o A Shell object pointer is provided to you as a global variable.
* You need to instanciate a new Shell object and work on it.

Using Shell objects received as parameters

This is a very simple case. The Shell already allocated an object and gives you its pointer as the parameter of one of
your Component procedures.

Example:

IMFExResponder: :Receive (int32 message, IMFResponder* source, void* data) ;

The source parameter is a Shell object of the IMFResponder Interface. You simply call its methods as you wish.
There is no need to call AddRef() on it. Do not call Release() cither, the Shell will take care of its own children.

Example:
int32 instancelD;

instanceID = source->GetInstancelID() ;

Using preset Shell objects stored in the library global variables

Many useful methods can be accessed via global pointers pointing to objects of the Shell. The global utilities pointers
are grouped by functionality into different COM interfaces (gShellUtilities, gResourceUltilities, ...). These interfaces
can all be found in the header files called somethingUtilities.h. All of the global variables are initialized by the
extension’s entry points MCDIlInit and MCDIICleanUp, so you do not need to worry about that.

Example:

uint32* myArray; // array of 640%480 unsigned long
myArray = gMemoryUtilities->Calloc (sizeof (uint32), 640%*480) ;

MééOMErr result = gMemoryUtilities->Free (myArray) ;
Instanciating a Shell object yourself

There are times when you need to create an object, like creating a 3D Primitive to put it in the Scene.

The procedure is a little bit unusual for COM programmers. Instead of calling the global procedure
CoCreatelnstance(), you will call IShComponentUtilities:: CoCreateInstance() on the gComponentUtilities or
gSh3DComponentUtilities global variable (depending on your needs).

If you need to create a component, you should use IShComponentUtilities::CreateComponent so that the internal
component is also created.

Example:
We create a Group and put it in the Scene:

HRESULT TDXFImporter::DoImport (char* fullPathName, I3DShScene* scene,
I3DShTreeElement* fatherTree)
{
TMCCountedPtr<I3DShGroup> group;
gSh3DComponentUtilities->CoCreateInstance (CLSID StandardGroup, NULL,
CLSCTX INPROC SERVER, IID I3DShGroup, (void**) &group) ;
// Do whatever we want on the group

// Use the group as a Tree Element to put it in the scene:

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 22 Using DAZ’s COM Dynamic Linking

TMCCountedPtr<I3DShTreeElement> groupTree; // The same as group, but as a Tree Ele-
ment

group->QueryInterface (I3DShTreeElement, (void**) &groupTree) ;

groupTree->SetScene (scene) ;

fatherTree->InsertLast (groupTree) ;

//Note: you do not need to call Release() as TMCCountedPtr will do it automati-
cally.

}

The “PMap” resource

A resource “PMap” describes the different parameters that the Shell can access. The PMap is key to Ul integration as
all components with Ul have a PMap resource.

The PMap describes the Ul data for the shell. There are 4 values in the PMap for each Ul element:

e a four letters ID (to identify the element)

e a four letter type code (boolean, long, etc.)

o a flags field (animate this element, etc.)

o the name of the element (appears in the Time Line)
e an extra string containing optional additional data

Whether you create your resource on the Mac or PC, your “PMap” should look like this:

resource ‘PMap’ (128)
{ /* First Array Element */
'SIZH', /* ID of the UI element in the view */
"in32", /* type of the value */
interpolate, /* value can be animated */
"Hori. Size", /* name */

wn /* Optional data */
/* Second Array Element */

'SIZV’, /* ID of the UI element in the view */
"in32", /* type of the value */

interpolate, /* value can be animated */

"Vert. Size", /* name */

e /* Optional data */

To learn more about PMaps and PMap types, refer to “The 'PMap’ resource” on page 13, “Auto PMap” on page 29,
and “PMap and a Part” on page 30.

IMCUnknown class
What is a COM object?

A COM object is any object derived from IMCUnknown (simple inheritance only).

class IMCUnknown

{

public:
virtual MCErr MCCOMAPI QueryInterface(const MCIID& riid, wvoid** ppvObj)=0;
virtual uin32 MCCOMAPI AddRef ()=0;
virtual uin32 MCCOMAPI Release()=0;

©2001-2007 DAZ 3D, Inc. All rights reserved.

Using DAZ’s COM Dynamic Linking Page 23

It is a key element of the Carrara COM implementation as it provides a way for a client to communicate with a
component. These functions are explained in greater details in the sections that follow.

When you are creating components to be used with Carrara, you always inherit more or less indirectly from
IMCUnknown.

QuerylInterface

Querylnterface is the cornerstone of COM. In COM, a client always communicates with a component through an
interface. Querylnterface defines the component; the interfaces that a component supports are the interfaces for
which Querylnterface returns an interface pointer. You use Querylnterface to discover whether a component supports
a particular interface. If the component supports the interface, QueryInterface returns a pointer to that interface.

virtual MCErr MCCOMAPI QueryInterface(const MCIID& riid, wvoid** ppvObj)=0;

The first parameter is the Interface identifier structure or the IID. The second parameter is the address where
Querylnterface places the requested interface pointer.

If you use the following notation:
if "ObjB = A->QI('B")" means: ObjA->QueryInterface(REFIID B, &ObjB)

QuerylInterface should follow the following rules:

(1) A->QI('A') == A
(2) (A->QI('B'))->QI('A') == A
(3) ((A->QI('B'"))->QI('C'))->QI('A') == A

AddRef

AddRef and Release use reference-counting to manage memory. Reference counting enables components to delete
themselves (once they are no longer being used). AddRef increases the reference count and Release decrements the
reference count.

When do you use AddRef?

o If you are asked for an object by someone, call AddRef before returning a pointer to it.
o If you plan to keep a reference on an object passed as a parameter in a function, the function needs to call
AddRef and then Release when done.

To learn methods that allow you to optimize reference counting and avoid using AddRef, see the MCCountedPtr
template. Refer to , “Counted Pointers” to learn more.

Release

As mentioned earlier, Release decrements the reference count. When you are finished with an interface, you should
call Release on that interface.

When do you use Release?

¢ Querylnterface increments the count; when done, call Release.

¢ A function you call to get an object should have incremented the count, so you only need to call Release.
o If you plan to keep a reference on an object passed as a parameter in a function, the function needs to call
AddRef and then Release when done.

To learn methods that allow you to optimize reference counting and avoid using Release, see the MCCountedPtr
template in , “Counted Pointers”

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 24 Using DAZ’s COM Dynamic Linking

More on QuerylInterface, AddRef and Release

It is highly recommended to read carefully , “Counted Pointers” for more details about using QueryInterface, AddRef

and Release.

Registering your Class ID with DAZ

As explained in the section “How the whole thing works” on page 4 in the Introduction chapter, it is vital that you
make sure that your Class ID is unique before distributing your software outside, even as a Freeware or Shareware.
The reason is that if someone else uses the same Class ID in his own extension, the 3D Shell will be confused when
trying to instantiate and initialize your 3D Component, causing a failure or a crash.

Registering your Class ID is free. There are no obligations. After acceptation, your Class ID will be yours forever and

should never be assigned to someone else.

e A Class ID is a set of 4 ASCII characters.

e Ranges of Class ID will not be registered by DAZ (like “all IDs from ‘AAAA’ to ‘AAAZ’”).

e Class IDs are case-sensitive.

o Class IDs with all lowercase letters are reserved to DAZ (like ‘abed’). Combos are fine, though (like ‘Abcd’).
e Try avoiding special characters (ASCII code > 128), because these characters are different between MacOS and

Windows.

How to register

Simply email the following information to sdk@daz3d.com. Make sure you include the word “registration” in your

e-mail title to allow faster processing.

Name:

Company:

Address: (if sending via mail)
Phone:

Fax: (if sending via Fax)
E-Mail:

Component Name Family ID

Class ID

Please include a brief description of your Component(s):

Send this information to:

E-Mail: sdk@daz3d.com

You will then receive a confirmation message from DAZ by email. If a conflict occurs, DAZ will offer an alternate

ID.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Using DAZ’s COM Dynamic Linking Page 25

Contacting DAZ - Developers Mailing list

If you have any questions regarding the SDK, you can join the SDK user list at:
http://groups.yahoo.com/group/carraraSDK

where the engineering team of Carrara will answer your questions.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 26 Using DAZ’s COM Dynamic Linking

©2001-2007 DAZ 3D, Inc. All rights reserved.

Platforms and Compilers issues Page 27

Platforms and Compilers issues

This chapter describes details about specific issues related to compilers and platforms.

Compiling for Windows

The supported compiler is Visual C++ 2005 or better from Microsoft. You should install the Service Pack 1.

You can use the Express edition, but you’ll also have to download the platform SDK. This page explains how to setup
everything : http://msdn2.microsoft.com/en-us/express/aa700755.aspx

Note that COM extensions are simply standard 32-bit DLLs with a .mcx suffix. Take a look at the sample make files
in the Carrara SDK and you’ll see that there are no special tricks there. Data files (files containing resources) have the
.dat suffix.

Creating a new extension project for Visual C++ 2005:

The first step is to create a new project. You should create this project within the SDK hierarchy. You can create it
next to an existing sample like CarraraSDK\Samples\Shaders\MyShader. If you create the project outside the samples
folder, you should create sub folders that follow the same structure (like
CarraraSDK\MyProjects\MyShaders\MyChecker). This avoids any problems with the relative path names given
below. Otherwise you'll need to adjust the number of dots in the given paths.

1 Create a new, empty project. Set the project name and location within the samples folder, then set the
project type to Win 32 Dynamic-Link Library.

2 Open the project settings.
2.1) In the C/C++ tab:

Select the "Project Options" field and add "@..\..\..\Build\CPFlags.opt" as the 2nd to last item
(before /c). (The number of dots depends on the position of your project relative to the file).
This is an options file which sets the include paths. Make sure the file is updated to have the
correct paths.

2.2) In the Link tab:
Change the output filename to myExtension.mcx (instead of myExtension.dll).

Add the following to the Object/library modules line of the Debug and Release builds
respectively:

-\A\LMib\win\debug\CommonLibrary.lib

-AL\L\lib\win\release\CommonLibrary.lib

You may also need to add other libs (mpr.lib version.lib vfw32.lib)

2.3) In the "Post-build step" tab
Add the following two commands (in that order):
call ..\.\..\Build\BuildDTA.bat Debug MyExtension
call .\.\..\Build\CopyMCX.bat Debug MyExtension

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 28 Platforms and Compilers issues

Compiling for MacOS

The supported compiler is Xcode 2.4 on Mac OS 10.4.

COM extensions are standard Shared Libraries with a .mex suffix. Data files (files containing resources) have the
.dat suffix in their name.

Setting up Carrara :

The sample projects are setup to use Carrara 6 Pro for debugging after copying the sample extension files directly
inside Carrara. If you installed Carrara in a different location or if you do not have the Pro version, see below how to
use a different Carrara folder.

Compiling one sample

o With Xcode, open the project "Proj.xcodeproj" located in the sample's folder (eg Samples/Atmospheres/Fog).
o Choose your active build configuration in the popup (Debug or Release)

o Click on Build

o If successful, you can click on the Debug button to launch Carrara and test the plugin.

Compiling all the samples

¢ Open a terminal window and cd to the BuildMac folder of the sdk.

o Type "./copyProjects.sh fog" to use the fog project as a template for the other samples.

e Type "./compile.sh debug" to compile all the samples in debug.

e Type "./compile.sh debug clean" when you need to remove the obj files for all the samples.

Using a different Carrara folder

® Open one of the projects with Xcode (eg Samples/Atmospheres/Fog).
¢ Open the project's info panel and select the build tab.

o Scroll to the bottom and edit the CARRAPATHPRO variable.

o Close the project's info panel.

Creating a new project for XCode

All the project files for the sdk samples are exactly the same (a script properly renames the resources and the dll when
copying them to the Carrara folder). Therefore, we strongly recommend that you use the same template for your
projects.

Debugging on MacOS

You can debug your extension using the XCode build-in debugger:
1. Build your extension using XCode build , or using the ./compile.sh as explained earlier.

2. Click on the Debug button to launch Carrara and test the extension.

©2001-2007 DAZ 3D, Inc. All rights reserved.

User Interface Page 29

User Interface

MCSketch is a resource editor provided with the SDK. The resources used in Carrara are fully cross-platform, and
can be created on either a Macintosh or a PC, since MCSketch exists on both platforms.

In this part, we will describe all the needed resources on both platform (Macintosh or Windows).

Make sure you are familiar with the main concepts of Components before reading this chapter. Specifically, be sure
you read “How the whole thing works” on page 4.

User Interface Options

When you are creating an extension, you need to decide which strategy to use for creating the user interface. For
example, if you are creating an extension such as an importer or exporter, you may not even need to create a user
interface. Refer to “No User Interface” on page 29 to learn more. Once you’ve determined that your extension needs
a mechanism for user interaction, you still have several different options for creating the user interface. If you only
need simple controls, such as a slider or radio button, you can use an automatically generated PMap. Refer to “Auto
PMap” on page 29 to learn more.

However, a PMap combined with a Part definition allows you the greatest flexibility in creating a user interface for
your extension. Refer to “PMap and a Part” on page 30 to learn more.

To summarize, your extension can provide:

o No user interface
¢ An auto-generated user interface (Auto-PMap)
o A user interface specified with a static resource. In this case:
o the data buffer is automatically maintained
e many user interface elements are available: check box, edit text, color picker, component
chooser, etc.
o A user interface generated from dta file, using standard MCFrame user interface elements
o A user interface generated from dta file, using extended MCFrame user interface elements (Part Extensions)

No User Interface

If you are creating an extension such as an importer or exporter, or if you have created a renderer, such as a
postrenderer or final renderer, you may not need to create any user interface elements for your extension; it simply
functions without user interaction.

Refer to the Cookbook and the Samples folder to see several examples of extensions created without a user interface.

Auto PMap

A resource “PMap” describes the different parameters that the Shell can access. All components with user interface
have a PMap resource. In some cases, a PMap is all that you need to create the user interface for your component.

Here is an example of a PMap:

resource 'PMap' (129)
{
{ // TODO: Add your parameters by providing:
// four letters ID,
// four letters type ID,

// interpolate or zero,

// name

// extra token string (usually "")

'WIEG', 're32', interpolate, "Weight!","", // this parameter is animated

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 30 User Interface

//'WIEG', 're32',noFlags, "Weight","", // this parameter is NOT animated

Vi

PMap and a Part

If your extension needs a user interface (UI), and what is provided by the Auto-PMap is not enough, you can use a
’lpart" .

A part is a piece of user interface. You create and edit a part using MCSketch. The main benefit of using a part instead
of an Auto-PMap is that you can personalize the Ul of your extension with your icons, your names and copyrights,
your URL, and so on. The ideal is to let the Auto-PMap do the job while you debug and test the algorithms of your
extension, and in the end finalize the extension with the Ul

You can combine a PMap with a part definition contained in a .rsr file. If the PMap and the part have the same
number, they automatically hook together. Note that the PMap is defined in a .r file, which must include the .rsr file.

For example, the Star sample has no part in its .rsr file, Star.rsr. The PMap defined in Star.r is:
resource 'PMap' (142)
{
{
}

'NBBR', 'inlé6', interpolate, "# Branche",6 "",
}i

Since there is no part of ID 142, the Star sample uses the Auto-PMap mechanism (which is enough for testing). If you
want to add your own UI, open Star.rsr in MCSketch, create a "New Resource’ via the menu "Edit’, and choose the

type "Node’. A node is a part that can contain other parts.
Edit

Can't Undo
Can't Redo

Cmd+Z
Cmd+Y

Ulmg T dn

New Resource
Resource Info
Preferences

Update To Latest Version Cmd+U

Cmds1

Get String Info...

Find Replace Strings...

142 star (T} 0

Cmd+X
New Resource
Copy Cmd+C
Paste CmdsV Resource Type E
Delete Resource ID (142
Duplicate Cmd+D Resource Mame
Salect All Cmd+A

|star parameters with my name |

Attributes
(D Purgeable Uk-‘eluad [Protected O Locked ‘

Insert in that Node part all the UI elements that you need. For example insert a *Static Text part’ to show your
copyright, and a ’Linear Slider part’ to display and edit the parameter of the PMap. Edit the ID of the slider part to
make it fit the ID of the parameter in the PMap: NBBR. This allows the Shell to match the PMap fields and the Ul
parts as shown.

©2001-2007 DAZ 3D, Inc. All rights reserved.

User Interface

Page 31

Node 142: star parame...

TMFLinearSliderPart

Root Class Name TMFLinearSliderPart

Class Name:|TMFLinearSIiderPan

Part ID: MBER N

Pasition

| S
- -
S 180 |—

Cira ~

—Constrain
; OTop
O Left

Samples using a PMap and .rsr file

The introduction to the cookbook provides a list of samples that demonstrate creating different user interface
elements. To see examples that use a PMap and an rsr file (created using MCSketch), to define the following user
interface elements, refer to the samples.

e Checkbox
e Color chooser

e [con

e Radio button group
o Scrollable edit text

e Sliders

¢ Dialog boxes
e Windows

e Menus

e Properties (set up and update)
e Sequencer hierarchy

Part Extensions

Another way to create a user interface, is to create Part Extensions. Once you create a part extension, you need to tie
it to a part of your dialog or window to customize its behavior.

To create a part extension:

1.

W

Create the resource with MCSketch. For example, you could create a node part. Then, add user interface
elements such as a slider.

Make sure the ID of the part is the same as the resource ID of the PMap. (This is the number in the
resource list in MCSketch, and the resource number in the .r file.)

Verify that the first field of the PMap in the .r file is set to the part ID (for the parts within the node).
Make sure that the object parameters (in the .h file) have a field for each element and that the size of the
field matches the PMap element’s second field (which is size).

Include the resource file in the .r file. (#include new.rsr).

For an example, refer to “Tab Part” on page 35.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 32 User Interface

Manually Controlling Your Own User Interface

In some cases, you’ll need to manually control the user interface for your component. The following samples show
you how to create and control specific user interface elements.

Creating your User Interface Containers

A dialog box and a window are both examples of user interface containers. The sections below, show how to create
them.

Using a Dialog box

To manage dialogs, you must get used to the following interfaces: IShResourceUltilities, IShPartUtilities, and
IMFDialogPart.

Here is some pseudocode that shows how to create a dialog box.

TMCCountedPtr<IMFPart> dialogPart;
TMCCountedPtr<IMFDialogPart> dialog;
void* oldResources = NULL;

boolean result = false;

//-- Load the resources from the DTA file
gResourceUtilities->SetupComponentResources (yourFamilyID,
yourClassID, &oldResources) ;
gPartUtilities->CreatePartByResource (&dialogPart,
kMFDialogResourceType, yourDialoglID) ;
gResourceUtilities->RestoreComponentResources (oldResources) ;

//-- Now open the dialog
dialogPart->QueryInterface (IID IMFDialogPart, (void**)&dialog) ;
result = dialog->Go() ;

//-- Get the value if we exited thru OK
if (result)

{
}

do something
//-- We are done with the dialog
dialog->Finished() ;

return result;

To learn more about TMCCountedPtr, refer to “Implementing a Counted Pointer Access Method™ on page 53.

Using a Window

A window can also be created from resources. That is mostly useful when you create a modeler and therefore need to
have a window of your own. Here is sample code of the creation of a window. This piece of code comes from the
Modeler sample.

TMCCountedPtr<IMFPart> window;
TMCCountedPtr<IMFPart> mainPart;

QueryInterface (IID I3DShModule, (void**) &shModule) ;
ThrowIfNil (shModule) ;

void* oldResources = NULL;

©2001-2007 DAZ 3D, Inc. All rights reserved.

User Interface

Page 33

lerID,

gResourceUtilities->SetupComponentResources (kRID ModuleFamilyID, kMode-
&oldResources) ;

shModule->CreateWindowByResource (&window, kModelerView, true);
ThrowIfNil (window) ;

// Retrieve a pointer on the main part, which ID is ’'MODv’ (see in MCSketch)
window->FindChildPartByID (&mainPart, 'MODvV') ;
ThrowIfNil (mainPart) ;

// Restore the resources chain.
gResourceUtilities->RestoreComponentResources (oldResources) ;

Once your window exists, you can show it or hide it, activate or deactivate it. To do so, use the IMFWindow interface,
and call Show() and Activate(). You should only need to do that in the I3DExModule’s methods Hydrate/Dehydrate,
and Activate/Deactivate.

Check the Modeler sample for implementation.

Setting a Child Part’s Values

Before opening an dialog, you must set up the dialog to the current values, the default values, or the last values that
the user entered. To do so, you must first find a pointer on the part’s interface. That is done with
IMFPart::FindChildPartByID. Use this method on a part at the top of you parts hierarchy to find the item you want to
modify, and then change the value of that item either by using its own interface or via the regular IMFPart interface.
If we rework the example of the dialog box given above, here is what we can have:

TMCCountedPtr<IMFPart> dialogPart;
TMCCountedPtr<IMFDialogPart> dialog;
void* oldResources = NULL;

boolean result = false;

gResourceUtilities->SetupComponentResources (yourFamilyID,
yourClassID, &oldResources) ;
gPartUtilities->CreatePartByResource (&dialogPart,
kMFDialogResourceType, yourDialogID) ;
gResourceUtilities->RestoreComponentResources (oldResources) ;

//-- Now let's say you want to set a item value before opening the dialog:

TMCCountedPtr<IMFPart> editText;

real32 value;

dialogPart->FindChildPartByID (&editText, yourItemID) ;
if (!editText) return result;

value

1.0;

editText->SetValue((void*)&value, kReal32ValueType, true, false);

//-- Now open the dialog
dialogPart->QueryInterface (IID IMFDialogPart, (void**)s&dialog) ;

result

= dialog->Go() ;

//-- Get the value if we exited thru OK
if (result)

{

editText->GetValue((void*)&value, kReal32ValueType) ;

do something with it...

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 34 User Interface

//-- We are done with the dialog
dialog->Finished() ;

return result;

Most of the parts can be accessed using the IMFPart interface. For example, the TMFStaticTextPart, the
TMFEditTextPart, the TMFLinearSliderPart, and the TMFRadioClusterPart are handled by the IMFPart interface.
Then of course, various IMF* child part examples tie into different IMF* interfaces, like tab parts tie into
IMFTabPart.

Examples of Specific user interface elements

The following examples show how to implement specific user interface elements.

Registration Dialog box

Here is a code snipet that shows a registration dialog that collects a name and number. This illustrated how to use text
boxes (EditTextPart parts). Before getting to the code, you need to create the appropriate items in MCSketch:

¢ Create a "Dlog’ resource and choose an ID for it (say 1000)

o Put 2 TMFEditTextPart parts inside your dialog. If you drag and drop the Edit Text element of the Part Palette
on the left, it comes inside a TMFScrollPart, which will allow your text to scroll. Be careful to select the
TMFEditTextPart and not the TMFScrollPart (look at the Part Properties palette on the right)

o Assign a 4 letters "part ID" to each of your TMFEditTextPart parts (say "Name’ and *SeNb’).

o Add some Static text parts to have a nice looking dialog. Give a title to your dialog.

boolean RegistrationDialog(TMCString& name, TMCString& serialNumber)
TMCCountedPtr<IMFPart> dialogPart;

TMCCountedPtr<IMFDialogPart> dialog;

void* oldResources = NULL;

boolean result = false;

name = kNullString;
serialNumber = kNullString;

//-- Load dialog resources
gResourceUtilities->SetupComponentResources (yourFamilyID,
yourClassID, &oldResources) ;
gPartUtilities->CreatePartByResource (&dialogPart,
kMFDialogResourceType, 1000) ;
gResourceUtilities->RestoreComponentResources (oldResources) ;

//-- Find dialog items
TMCCountedPtr<IMFPart> nameTextPart;
TMCCountedPtr<IMFPart> serialTextPart;

dialogPart->FindChildPartByID (&nameTextPart, ’‘Name’) ;
if (!nmameTextPart) return result;
dialogPart->FindChildPartByID (&serialTextPart, ’SeNb’);
if (!serialTextPart) return result;

//-- Now open the dialog
dialogPart->QueryInterface (IID IMFDialogPart, (void**)s&dialog) ;
result = dialog->Go() ;

//-- Get the value if we exited thru OK

©2001-2007 DAZ 3D, Inc. All rights reserved.

User Interface Page 35

if (result)

{

nameTextPart->GetValue ((void*) &name, kStringValueType) ;
serialTextPart->GetValue ((void*)&serialNumber, kStringValueType) ;

}

//-- We are done with the dialog
dialog->Finished() ;

return result;

}

Tab Part

To create a tab part you’ll need to set up the .r and .rsr files as described below.

In the .r file:
e Add a new part in your .r file, that lists all the tabs you want to include in your user interface.
o Create a new resource, called TABS, and select an ID number for this new part. The ID number must be within
the range of 127 and 5,000.
o Create a list of all your pages, respectively giving another ID for your page, its name and the ID of the icon with
which you want to associate it.

You will obtain something like this:

resource ‘TABS’ (id of tab)
{
{

id of first page, name of the page, id of the assiociated icon,

In the .rsr file:

In this file, you first have to create a TabPart. To do so, create a simple node and change the class name into
TMFTabPart. This part will contain two other nodes which will be the hosts for the icons and pages areas
respectively. Then, put on some parameters in the Custom Tokens area. There actually are four possible tokens:

e TABS: it’s the only required parameter. Enter it next to the id you have previously chosen for your tab

(id_of tab in the .r file).

e icoT: it’s an optional integer. Set it equal to 1 to associate icons with your tab pages.

¢ aINT: it’s optional boolean. By default, Carrara will put the name of your page above your icons. If you set this
boolean to 1, the name of your pages will be then displayed beside your icons.

e Page: it’s another optional integer. By default, Carrara won’t open any tab page. If you set this integer to a value
(between 1 and the number of your pages), Carrara will open the indexed page. This index is based on the order of
the pages in the .r file (within the resource ‘TABS’ you previously created).

To learn more about custom tokens, see “Extra Tokens for Each Part” on page 36.
Creating icons

Let’s deal now with the icons area. Create a node inside the TMFTabPart, and change the class name into
TMFTabArea. Also change the Part ID to TabA. This is the default name for the shell to recognize this node as the
host for icons. To finish, put on the ‘top’, ‘bottom’ and ‘left’ constraints.

Then, for the pages area, create a simple node within the TMFTabPart. Change the Part ID into Host. This is also the
default name for the shell to recognize this part as the host for user interface tab pages. To finish, set all the
constraints to on.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 36 User Interface

Creating a Component Chooser

Quite often in the interface you need the user to choose an item. And quite often, the possible item is one component
plugged into the Shell. For example, the Properties Palette of Carrara for any object allows to apply a Constraint to
that object by selecting in the list of all the constraints currently plugged into Carrara’s Shell. Once chosen, the UI’s
component shows up, and the user can set the parameters of the component. You may also notice that most of the
time, the component chooser is a collapsible part.

That kind of Ul item is always done the same way in Carrara. The whole operation is done by what we call the
component chooser.

A component chooser is a very powerful tool, with only a few limitations. For example, although most of the time
choosing the component is done for a given family, you are not restricted to only one family. Or you may want the
part to be collapsible or not.

There are two major types of component choosers :

o the single component chooser; to be used when you need just ONE component at the time.
o the multiple component chooser; to be used when you want a dynamic list of components.

In this example, let’s focus on the most common : the single component chooser. To create a single component
chooser you’ll need to set up the .r and .rsr files as described below.

In the .rsr file:

In this file, you first have to create a single component chooser. To do so, create a simple node and change the class
name into TSingleComponentChooser. Then, put on some parameters in the Custom Tokens area.

To learn more about custom tokens, see “Extra Tokens for Each Part” on page 36.

MCSketch

MCSketch provides a cross-platform tool for user interface data creation. It adds the ability to edit your own resource
template.

Extra Tokens for Each Part

Many parts have features that do not show up in MCSketch as buttons in the Properties palette. You set the values for
these extra features in the "Custom Tokens" box in the Part Properties palette of MCSketch. Warning : there is no
control from MCSketch about the content of this text box. Therefore, you need to follow strictly the Token Manager
syntax rules (which are the same as the syntax rules of the file format : pairs of token and value).

For an example of how to create tokens, see the SDK\Samples\LightSources\Light\Light.r and Light.rsr files.

List of all Ul elements (parts)

When you want to create a UI element in MCSketch (for example, a button in a dialog), you can either drag and drop
a preset one from the Part Palette on the left, or select the right menu item from the MFWindow/Plugin Group#xxx
sub menus.

The Part Properties palette then shows several important pieces of information about the part you just created:

o The Root Class Name : this is the name of the C++ object behind the element.

o The Class Name : often, you want in fact to instantiate a more sophisticated version of this C++ object. For
example, you can create a TMFEditTextPart (a text box), but in fact you want a TMF3DUnitEditTextPart (to have
units in your text box). Simply type "TMF3DUnitEditTextPart" in the Class Name field.

©2001-2007 DAZ 3D, Inc. All rights reserved.

User Interface Page 37

o The Custom Tokens field : allow you to set up additional parameters to your part if they cannot be set through
an editor (see “Extra Tokens for Each Part” on page 36).

o The Editor specific to the part : for example, a TMFEditTextPart editor allows you to change the default text, set
the text type, justification, etc.

TMFEditTextPart - Edit Text part

Purpose : Free text entry or numerical values entry
Root Class : TMFEditTextPart
Default Class Name : TMFEditTextPart
Other possible Class Names : TMF3DUnitEditTextPart
Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types : kInt16ValueType, kint32ValueType, kReal32ValueType,
kInt32MinMaxOnlyValueType, kReal32MinMaxOnlyValueType, kStringValueType
Editor in MCSketch : yes
Custom Tokens :
Token Type Default value Purpose
NtyA boolean false Notify on all changes (not just the end of the editing)
SpnB boolean true Display a "spin box"
Ntfy boolean true Notify if value is out of range
Comments : None
TMFIconButtonPart
Purpose : zot
Root Class : TMFIconButtonPart
Default Class Name : TMFIconButtonPart
Other possible Class Names : none
Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :
Editor in MCSketch : yes
Custom Tokens :
Token Type Default value Purpose
Comments :
TMFTextButtonPart
Purpose :
Root Class : TMFButtonPart
Default Class Name : TMFButtonPart
Other possible Class Names : TMFIconButtonPart,
Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :
Editor in MCSketch : yes

Custom Tokens :

Token Type Default value Purpose

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 38 User Interface

Token Type Default value Purpose

Comments :

TMFDialPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFHierarchicalListPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFImagePart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

©2001-2007 DAZ 3D, Inc. All rights reserved.

User Interface Page 39

Comments :

TMFCheckboxPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFColorPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFOverlaylmageControlPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 40

User Interface

TMFRadioPart

Purpose :
Root Class :
Default Class Name :

Other possible Class Names :

Supported interfaces :
Supported value types :
Editor in MCSketch :
Custom Tokens :

zot

IMCUnknown, IMFPart, IShComponent, and IMFResponder

Token Type Default value Purpose
Comments :
TMFToolbarPart
Purpose : Selection of tools
Root Class : TMFNodePart
Default Class Name : TMFToolbarPart

Other possible Class Names :

Supported interfaces :

IMCUnknown, IMFPart, IShComponent, and IMFResponder,

IMFToolbarPart

Supported value types : kiInt16ValueType, kint32ValueType
Editor in MCSketch : no

Custom Tokens :

Token Type Default value Purpose

HorL boolean true Defines whether the toolbar is in a horizontal (true) or vertical (false) ori-
entation

TBAR intl6 0 Reference to a TBAR resource whose tools will be loaded into the toolbar

Glob boolean true Defines whether the toolbar is global (true) or local (false). Global tool-
bars enforce mutual-exclusivity of tool selection across all global toolbars,
while local toolbars only enforce it within itself.

TIRc IDType Defines the part ID of the part that should receive tool selections (SelfMen-
uAction or SelfToolAction). If this token is not defined, tool selections
will be passed to the first responder.

SpSz int32 5 Defines the space between tools

RAct boolean false If true, tools will respect the activeness of their enclosing window (i.e.,
tools will be disabled if the window is disabled). If false, tools will ignore
the window activeness.

Comments :
TMFNodePart
Purpose : zot
Root Class :
Default Class Name :
Other possible Class Names :
Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :
Editor in MCSketch :

©2001-2007

DAZ 3D, Inc. All rights reserved.

User Interface Page 41

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFAutoCenteringPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFBalloonPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFWindoidPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 42 User Interface

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFDialogoidPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFCollapsiblePart, TMFSelectableCollapsiblePart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, IMFResponder, and
IMFCollapsiblePart

Supported value types :

Editor in MCSketch :

Custom Tokens :

Token

Type Default value Purpose

Comments :

TSingleComponentChooser

Purpose : Let the user choose a component from a pop-up menu. Many features
included automagicaly, like selection/drag’n’drop, mini-part display, etc.

Root Class : TMFLeafPart

Default Class Name : TSingleComponentChooser

Other possible Class Names : TSingleCompChooserWithWireFrame, TSingleCompChooserWithPreview
Supported interfaces : IMCUnknown, IMFPart, IShComponent, IMFResponder,
IMFCollapsiblePart, and ISingleComponentChooser

Supported value types : ’comp’ (AKA kComponentValueType

Editor in MCSketch : no

©2001-2007 DAZ 3D, Inc. All rights reserved.

User Interface

Page 43

Custom Tokens :

Token Type Default value Purpose

fmly IDType Family ID of the components to fit into the menu.

bnon boolean true Is "none’ a valid option ?

shof boolean true Show the family name.

Mskl uint32 0 Include Mask for the pop-up menu

MskE uint32 0 Exclude Mask for the pop-up menu

Sort boolean false Sort the pop-up menu by family name.

Subm boolean false Sub-menu mode : true will create sub-menus of the items by sub-family.
The title of the sub-menu is the sub-family string (in the COMP resource).

Mini boolean false Use a mini part ? If true, the collapsible state displays the part that is speci-
fied in the COMP resource of the component, and linked to the PMap.

Name string NAme of the component chooser.

shpp boolean true Show the pop-up.

SHos IDType ID of the selectable host.; that must be a parent of the chooser.

Comments :

TMultipleComponentChooser

Purpose :
Root Class :

Default Class Name :
Other possible Class Names :
Supported interfaces :
Supported value types :
Editor in MCSketch :
Custom Tokens :

zot

IMCUnknown, IMFPart, IShComponent, and IMFResponder

Token Type Default value Purpose
Comments :
TMFFramePart
Purpose : Draws a frame in the bounds of the part
Root Class : TMFNodePart
Default Class Name : TMFFramePart
Other possible Class Names : none

Supported interfaces :

IMFFramePart

Supported value types :
Editor in MCSketch :
Custom Tokens :

Comments :

TMFGradientPart

Purpose :

transparencies

Root Class :

IMCUnknown, IMFPart, IShComponent, IMFResponder, and
none

no
none

Draws a horizontal or vertical gradient between arbitrary colors and

TMFNodePart

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 44 User Interface

Default Class Name : TMFGradientPart

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types : none

Editor in MCSketch : no

Custom Tokens :

Token Type Default value Purpose
SrtF Fill Attr. black Start Fill
EndF Fill Attr. white End Fill
SrtT real32 0 Start Transparency (0.0 to 1.0)
EndT real32 0 End Transparency (0.0 to 1.0)

Vert boolean false Defines whether the gradient runs left to right (false) or top to bottom
(true)

Comments :

TMFNodeReferencePart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFRadioCluster

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFScrollPart

Purpose : zot

©2001-2007 DAZ 3D, Inc. All rights reserved.

User Interface Page 45

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFSIlider, TMFCircularSliderPart, TMFLinearSliderPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFSolidColorPart

Purpose : Fills the part bounds with a color

Root Class : TMFNodePart

Default Class Name : TMFSolidColorPart

Other possible Class Names : none

Supported interfaces : IMCUnknown, IMFPart, IShComponent, IMFResponder, and
IMFSolidColorPart

Supported value types : none

Editor in MCSketch : no

Custom Tokens :

Token Type Default value Purpose
Fill Fill Attr. white Fill (color)
Trns real32 0 Transparency (0.0 - 1.0)

Comments :

TMFSplit3Part

Purpose : zot
Root Class :

Default Class Name :

Other possible Class Names :

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 46 User Interface

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFCollapsibleListPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFVectorPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFListPart, TMFRuledListPart, TMFStringListPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder

Supported value types :

©2001-2007 DAZ 3D, Inc. All rights reserved.

User Interface Page 47

Editor in MCSketch :
Custom Tokens :

Token Type Default value Purpose

Comments :

TMFOffscreenPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFPoppedPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFRectPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 48 User Interface

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFStaticTextPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

TMFTextPopupPart

Purpose : zot

Root Class :

Default Class Name :

Other possible Class Names :

Supported interfaces : IMCUnknown, IMFPart, IShComponent, and IMFResponder
Supported value types :

Editor in MCSketch :

Custom Tokens :

Token Type Default value Purpose

Comments :

Interfaces supported by each Ul element (part)

The following table summarizes the list of implemented interfaces for each User Interface element that you can create
in MCSketch. This information can also be found in the invidual decription of each part (see “List of all UI elements
(parts)” on page 36). Very often, you need to talk to a part using several interfaces, using Querylnterface to get

pointers on these interface. In the dialog example above, we talk to the dialog as a IMFPart and as a IMFDialogPart.

All parts implement :

IMCUnknown, IMFPart, IShComponent, and IMFResponder.

©2001-2007 DAZ 3D, Inc. All rights reserved.

User Interface

Page 49

Most of the time, using IMFPart::SetValue, IMFPart::GetValue, and other IMFPart calls is good enough to set up

your Ul elements. However, some parts implement additionnal interfaces for special purposes.

Table 3: Additionnal interfaces supported by some Ul elements

Class Name Additionnal supported interfaces
TMFCheckboxPart IMFImageControlPart
TMFColorPart

TMFOverlaylmageControlPart
TMFRadioPart

TMFToolbarPart IMFImageControlPart, IMFToolbarPart
TMFWindoidPart IMFWindow

TMFDialogoidPart IMFWindow, IMFDialogPart
TMFFramePart IMFFramePart

TMFCircularSliderPart IMFSliderPart
TCircularConstraintSliderPart

TMFLinearSliderPart

TLinearContraintSliderPart

TBitmapSliderPart IMFSliderPart, IMFBitmapSliderPart
TMFSolidColorPart IMFSolidColorPart
TColorPickerSwatch

TMFTabPart IMFTabPart
TComponentUIPart IMFParameterComponentPart
TParameterPart IMFParameterPart
TTextureMapPart ITextureMapPart
TMFListPart IMFListPart
TMFRuledListPart

TMFTextPopupPart IMFTextPopupPart
TMF3DUnitsPopupPart

TMFFontListPopupPart

TMFFontStylePopupPart

TMFIconPopupPart

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 50 User Interface

©2001-2007 DAZ 3D, Inc. All rights reserved.

Counted Pointers Page 51

Counted Pointers

Using counted pointers allows you to easily deal with reference counting by hiding the calls to AddRef() or Release()
directly.

Note: After construction of an object, its reference count should be 1.
Before you begin, it is important to outline why reference counting is important:

1. It is much safer. You can much more easily avoid double-deletes, leaks and other memory problems
using reference counting. Sometimes you need to keep references to things that normally would be
deleted. For instance, in TMFAction and subclasses, it is convenient to keep references to items that are
removed, reordered, deleted, etc. Without reference counting, it may be impossible to keep the pointer
valid without leaking.

2. Itis actually easier in some cases to keep reference counts. Keeping reference counts alleviates the need
for ownership of pointers. To use a metaphor: last one out turns off the lights.

3. You have no choice. In COM-based applications, reference counting is required. For instance, in order
to pass an ISceneDocument interface to an external component, you need to implement a reference
count for that object. If you simply reference count TSceneDocument, and not its parent classes (includ-
ing TMFResponder), then half of the object is reference counted and half is not. And once the reference
count becomes zero, the object is destructed, even though the pointers that were not reference counted
still think that the object is valid.

Defining Classes that May Need to be Counted

Here are some rules for defining classes that may need to be counted:

e Derive your class from TMCSMPCountedObject.

e Make the destructor protected; it can be private if there is no sub-class.

e Make the constructor protected; it can be private if there is no sub-class.

e Provide a static “Create::(T**)” method. (“Create::(T** P1, ...)” if other parameters are needed for constructor.)

TMCCountedObject/ TMCSMPCountedObject

These objects implement simple reference counting. In Carrara, only TMCSMPCountedObject should be used
because it uses an atomic counter for reference counting and is thus compatible with multi-threading.

Note: AddRef() and Release() need to be virtual MCCOMAPI's so that real COM objects can subclass from
TMCSMPCountedObject and override the functions. However, this should not add any size overhead, since
subclasses of TMCSMPCountedObject should already have virtual destructors.

Destructors

Destructors for all subclasses of TMCSMPCountedObject should be protected and virtual. You should never call
delete on any such object — use Release() instead.

Be careful: C++ lets you make members more public without warning (so check your class to make sure what access
level the destructor should be).

Also, be sure you do not rely on destructors to remove their objects from global lists.

This clearly cannot work, since if an object is on a global list (that is presumably reference counted), the destructor
will never be called, since there will always be a reference to the object.

Using AddRef() and Release()

Basically, there are only two rules for proper reference counting:

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 52 Counted Pointers

1. Call AddRef() whenever you assign a reference counted pointer to a variable.
2. Call Release() whenever you are done.

Experienced COM programmers out there might realize that we are one rule shy of listing all of the COM rules for
reference counting. The rule that we are missing is: Call AddRef() before returning. That's true, it's gone, but because
of the way TMCCountedPtr works, we need to adjust for it. TMCCountedPtr AddRef()s on assignment, which
includes function return values. So technically, the AddRef() occurs after the function return, so rule (1) applies.

However, if you don't use a TMCCountedPtr, you need to explicitly call AddRef() on function returns when they
return a reference counted value.

Note: We're still OK on QuerylInterface() though, since the assignment happens inside the function, so you won't need
to call AddRef() after returning from QuerylInterface().

TMCCountedPtr

The above rules imply a lot of calls to AddRef() and Release(), which can clutter the code to unreadability.
TMCCountedPtr's make things much easier since they call AddRef and Release to implement the rules above.

TMCCountedPtr is a behavior-wrapper for a pointer to any class that implements AddRef() and Release() (including
TMCCountedObject). TMCCountedPtr overrides many operators (including *, ->, &, =, and cast) in order to call
AddRef() and Release() at appropriate times and check pointers when necessary. See TMCCountedPtr.h for more
information.

The only data in TMCCountedPtr is the pointer itself and there are no virtueless, so the class has no size overhead.
It is a template class and should be used thus:

TMFResponder* fMyResponder; //old becomes
TMCCountedPtr<TMFResponder> fMyResponder; //new

Since the destructor calls Release(), TMCCountedPtrs are best used as stack-based objects or class data members
only. Do not use TMCCountedPtr* or use TMCPtrArray<TMCCountedPtr<T>*> since you want their destructor to
be called automatically.

Do not pass TMCCountedPtr's as arguments to functions. It is not necessary, since passing parameters does not keep
a reference (so no AddRef() needs to be called).

Remember, only if you assign to a variable do you need to call AddRef().
TMCCountedPtrArray
TMCCountedPtrArray is to TMCPtrArray what TMCCountedPtr is to T*.

TMCCountedPtrArray<T> is a template class that is a subclass of TMCClassArray< TMCCountedPtr< T >>. It
should be used thus:

TMCPtrArray<TMFResponder*> fMyResponders; //old becomes
TMCCountedPtrArray<TMFResponder>fMyResponders; //new

These arrays are a cross between TMCPtrArray and TMCClassArray, since they have properties of both. For
instance, TMCCountedPtrArray<T>::iterator::First() returns a TMCCountedPtr<T> (like a TMCPtrArray), but it is a
class array, so destructors are automatically called (and thus Release()) on removal from the list.

Miscellaneous

Note: You also cannot create counted objects on the stack, since that involves an implicit destructor at the end of the
scope. For instance, you cannot do this:

{
}

TMFWindow myWindow (...);

©2001-2007 DAZ 3D, Inc. All rights reserved.

Counted Pointers Page 53

Instead, use a TMCCountedPtr and call the static Create() fuction. The release will be called by the implicit destructor
on the TMCCountedPtr.

{

TMCCountedPtr<TMFWindow> myWindow;
TMFWindow: : Create (&myWindow) ;

Note: You need to be careful to handle cycles correctly. A cycle occurs when object A has a reference to B and B has
areference to A. If a cycle is created, the objects will never be destroyed even if there is no reference to the cycle
outside of itself ! It is best to avoid cycles in counted reference. To avoid cycles you should defines which object is
the owner of the other object: for instance, if A owns B, then A keeps a counted reference to B but B keep an
uncounted reference to A.

Reference Count Optimizations

TMCCountedPtr's are indiscriminate. They reference count everything, even when you don't really need to. For
instance,

{
TMCCountedPtr<TMFResponder> r = GetFirstResponder () ;
r->DoSomethingThatWillNotRelease () ;
r->DoSomethingElse () ;

You do not really need a counted pointer here, since you are not keeping a reference beyond the scope of the function,
and the function DoSomethingThatWillNotRelease() will not decrement the reference count on r, so it won't go away
out from under you.

Implementing Create

Implement Create as follows:

void TMyClass::Create (TMyClass** a)

{

TMCCountedCreateHelper<TMyClass> result (a) ;
result = new TMyClass;

Implementing a Counted Pointer Access Method

The accessor to a Counted Pointer can be implemented as follows:

TObjectClass* TMyClass: :GetNoAddRef (

{
}

return fObject

Or

void TMyClass: :Get (TObjectClass** a)
{

TMCCountedGetHelper<TObjectClass> result(a) ;

result = fObject; // fObject is a counted pointer

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 54 Counted Pointers

Implementing Querylnterface()

QueryInterface should always return something for [lUnknown. This is usually done by calling QueryInterface on the
parent class. Here is an example of implementation of QueryInterface:

MCCOMErr TMyClass::QueryInterface (const MCIID& riid, void** ppvObj)

{

if (riid == IID I3DExInstancePrimitive)

{

TMCCountedGetHelper<I3DExInstancePrimitives> result (ppvObj) ;
result = static cast<I3DExInstancePrimitives(this) ;
return MC_ S OK;

}

return TParentClass::QueryInterface(riid, ppvObj) ;

Helper Classes for Counted Pointers

Carrara provides two helper classes for Counted Pointers: TMCCountedGetHelper and TMCCountedCreateHelper.

You use TMCCountedGetHelper to implement a “Get” operation, or a similar interface. This will Release the
previous object if there was any, clear the handle, and help you affect a new value, and do the AddRef. It will check
as many things are OK as possible.

You use TMCCountedCreateHelper in a “Create” method (Typically when you create your counted object with the
new operator (which initializes the RefCount to 1)). It also does plenty of validity checks.

It is imperative to use these new classes if you want to be able to track AddRefs/Release calls. Without that, the
debugging code can’t match AddRef and Release. It is imperative to not call AddRef and Release explicitly, as these
calls can't be tracked either.

All COM objects should implement the proper Querylnterface for IID_IMCUnknown.

Here are a few examples of uses for these two new classes (please study them carefully.)

Example of TMCCountedGetHelper

//Use with void*x*

MCCOMErr TMFBaseWindow: :QueryInterface (const MCIID& riid, wvoid** ppvObj)

if (MCIsEqualIID(riid, IID_ IMFWindow))

TMCCountedGetHelper<IMFWindow> result (ppvObj) ;
result = (IMFWindow*)this;
return MC S OK;

}

return TMFNodePart::QueryInterface (riid, ppvObj) ;

}

//Use with type, no conditional affectation
void TMFBaseWindow: :GetWindowFirstResponder (TMFResponder** outResponder)
const

{

TMCCountedGetHelper<TMFResponder> result (outResponder) ;
result = fFirstResponder;

//Use with type, conditional affectation *outDocument can be NULL at the

©2001-2007 DAZ 3D, Inc. All rights reserved.

Counted Pointers Page 55

void TMFDocument: :FindDocForFile (TMCFile* afile, TMFDocument**
outDocument)
{
TMCCountedGetHelper<TMFDocument> result (outDocument) ;
TMCCountedPtrArray<TMFDocuments>: :iterator
iter (TMFDocument : : sDocumentList) ;
for (TMFDocument* aDocument = iter.First(); iter.More(); aDocument =
iter.Next ())

{

if (aDocument->FindDoc (afile))

{
}

result = aDocument;

//a more complex use of the GetHelper, you need to use both a TMCCountedPtr and
//a TMCCountedGetHelper because the type are different. If, like before, you were
//not using a TMCCountedPtr for 'component', the reference tracking would be
//wrong.
void TComponentUI: :CloneComponent (IShParameterComponent **res)
{
TMCCountedGetHelper<IShParameterComponent> result (res) ;
TMCCountedPtr<TComponent> component;
Clone (&component) ;
result=static_ cast<TComponentUI*> (*&component) ;

}
Example of TMCCountedCreateHelper

//example of TMCCountedCreateHelper

void TMFWindoidPart::Create (
const TMCWindowInfo& inWindowInfo,
const EWindoidTypeinWindoidType,
TMFWindoidPart**outObject)

TMCCountedCreateHelper<TMFWindoidPart> result (outObject) ;
result = new TMFWindoidPart (inWindowInfo, inWindoidType); //Init count
to 1, no AddRef

}

//an other example of TMCCountedCreateHelper
void TBrushMask: :Clone (TComponent **res)

{
TMCCountedCreateHelper<TComponent> result (res) ;
TComponentUI* newComp = new TBrushMask(); //Init count to 1, no AddRef
CloneComponentUIData (newComp) ;
result=newComp;

TMCCountedPtr vs Interface Pointer

Always use TMCCountedPtr in function cores but pay attention to cycle references when the pointers are contained
in an object.

Here is an example of the correct way to use a TMCCountedPtr:

{

TMCCountedPtr<interfaceType> ptr;
QueryInterface (IID interfaceType, (void**)&ptr) ;

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 56 Counted Pointers

ptr->function(...);

The same code with an interface pointer:

{
interfaceType *ptr=NULL; // don't forget to initialise to NULL
// '! (not necessary with counted ptr)
QueryInterface (IID interfaceType, (void**)&ptr) ;

ptr->function(...);

ptr->Release () ; // do not forget this or will leak

}
Two functions returning InterfacePtr

There are two ways to get an InterfacePtr:

interfaceType *GetInterface() ; // does no AddRef
GetInterfaceType (interfaceType **); // does a AddRef
For example:
TMCCountedPtr<interfaceType> ptr; // or interfaceType *ptr;

obj->GetInterface (&ptr) ;

Never return a CountedPtr

For example:

interfaceType *Getfdfkdsjfk()

{

TMCCountedPtr<..> ptr;

return ptr;

}

What happens in this case is that the ptr will be released at the end of the function. So you will pass a reference to
something that has just been released. This may cause crashes, specially in optimize compiled code, since the
debugger often modifies the scope of variable for debugging purposes. Therefore those crashes are very difficult to
find. If you happen to have crashes in optimize compiled code but not in debug compiled code, check the returned
arguments for countedPtrs and local variables.

Creating objects

Objects should have a reference count of one when you just called their constructor. This is necessary for aggregation
purposes. So if you write a CoCreatelnstance function you should be careful to do a Release() after the
QuerylInterface or your reference count will be 2 when you get out of CoCreatelnstance.

Aggregation

If an object keeps a reference to an interface to an other object with which it is aggregated, this pointer should not be
counted (as it would make it impossible to delete the object).

However you usually need to call Querylnterface to get this internal reference which will do a AddRef on the
aggregated object. So be sure to call Release just after the Querylnterface. This is possible as the reference count is

©2001-2007 DAZ 3D, Inc. All rights reserved.

Counted Pointers Page 57

initialized to 1.

Not all of the points concerning the aggregration are discussed here. You should at least be aware that QuerylInterface
and Release cannot be done in an aggregation as in a simple object.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 58 Counted Pointers

©2001-2007 DAZ 3D, Inc. All rights reserved.

Utilities Page 59
Utilities

This chapter describes details about the utilities included with Carrara.

Many global utilities are available to extensions. They are initialized automatically by the SDK library when the
Extension is loaded. You access these utilities through global variables.

Examples:

o File and streaming

e Memory allocation, off screen buffers, pixel iterators
e Menus, mouse action (for tracking), drag/drop

e Component utilities

e Etc.

Various Shell Utilities (IShUtilities)

Use the IShUtilities interface with the gShellUtilities pointer to access to various services from the Shell. These
services include :

e Progress bar management

e Time count (TickCount)

e Random number generation

e Low level alerts

e Image "pixel buckets"

e Open documents browsing

o MMX utilities (Windows only)

o Text metrics, cursor, fonts list, keyboard low level tests, etc.

Thread Utilities (IShTreadUtilities)

IShTreadUtilities and gShellTreadUtilities are used to launch and kill cooperative threads. Note that those threads
are not preemptive threads. If you want to launch preemptive threads, you should use IShSMPUtilities.

Component Utilities (IShComponentUtilities)

Use IShComponentUtilities and gComponentUtilities to manage components from your extension. The main
purpose is to create components. You can then use QueryInterface to initiate a more personalized discussion with the
component.

SMP Utilities (IShSMPUtilities)

Use IShSMPUtilities and gShellSMPUtilities for multi-tasking management (launching a new thread, killing one,
etc.). See “Multi-Threading” on page 71 for details about multi-tasking.

Action Utilities (IShActionManager)

IShActionManager and gActionManager are used to post Actions and Mouse Actions. You can also test the status
of modifier keys of the keyboard (Control, Alt, etc.).

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 60 Utilities

Menu Utilities (IShMenuUtilities)

Use IShMenuUtilities and gMenuUltilities to manipulate menus: you can dynamically build menus, enable and
disable menu items, etc.

Part Utilities (IShPartUtilities)

IShPartUtilities and gPartUtilities are used to create Parts (usually from a resource built in MCSketch). The most
useful call of this interface is CreatePartByResource.

Resource Utilities (IShResourceUtilities)

Use IShResourceUtilities and gResourceUtilities to load any kind of resources stored in your DTA file by using
GetResource or GetIndResource.

Use GetIndString to load string resources (STR#) with automatic Windows-to-MacOS or MacOS-to-Windows ASCII
translation.

Before any resource loading operation, make sure that the current resource file is properly set on your DTA file by
encapsulating your resource calls between SetupComponentResources and RestoreComponentResource.

File Handling (IShFileUtilities)

The utilities used to access and manipulate file streams are IShFileUtilities, IShFileFormatUtilities and
IShFileStream. Another interface that you should become familiar with is IMCFile.

The global variables to use are gFileUtilities and gFileFormatUtilities.

Creating Files

When creating files, you never inherit from IMCFile. When you need to create a file, create it through
IShFileUtilities::CreateIMCFile by doing the following:

TMCCountedPtr<IMCFile> myFile;
gFileUtilities->CreateIMCFile (&myFile); // Note the '&'

//Then you can use myFile at your leisure (don't forget it's a COM object)
myFile->....

Remember that when you see a Shell procedure with a double deferencing in its parameters list, it means a returned
COM parameter, very much like in QueryInterface.

Examples:

IShUtilities::GetFontList (IMCFontList** outFontList) ;
IShMenuUtilities: :CreateMenu (TMFMenuInfo& inInfo, IFMMenu** outMenu) ;

Opening Files

Once you created a IMCFile object, you can use it to manipulate a file. Link the interface to the physical file using
SetWithPathname or SetWithFullPathname.

Example:

TMCCountedPtr<IMCFile> aFile;

©2001-2007 DAZ 3D, Inc. All rights reserved.

Utilities Page 61

gFileUtilities->CreateIMCFile (&aFile) ;

TMCDynamicString path;
gShell3DUtilities->GetLastImageOpenPath (path) ;
aFile->SetWithPathName (path) ;

gFileFormatUtilities->OpenFileDialog(DialogName, aFile,
inTypes, Formatl, Format2) ;

aFile->GetFileName (pathName) ;

Working with Streams

This example shows how to write out to a stream.

TMCfstream* stream = NULL;
uint32 nbInst = 0;
TMCCountedPtr<I3DShScene> scene;

TMCStringl023 fullPathName;

file->GetFileFullPathName (fullPathName) ;

stream = new TMCfstream(fullPathName.StrGet (), TMCiostream: :out) ;
ThrowIfNil (stream) ;

// FailNIL (stream) ;

// FailOSErr ((intl6) stream->InitFileStream(fullPathName, kSh-
StreamOut)) ;

//stream->SetMacOSInfo ('ttxt', '"TEXT'); // Needed on the Mac, Will not do
anything on the PC

WriteDXFBegin (stream) ;

Personality Utilities (IShPersonalityUtilities)

IShPersonalityUtilities and gPersonalityUtilities can be used to get the color settings of the UI. You will probably
never need it.

Drag & Drop Utilities (IShDragAndDropUtilities)

IShDragAndDropUtilities and gDragAndDropUtilities and used for 2 things: creation of drop candidates and drop
areas, and launching a drag-and-drop action.

Change Management (IChangeManager)

IChangeManager and gChangeManager are used to Change Management. Change Management is a powerful
messaging feature in Carrara. It works by creating “channels” (see IChangeChannel interface), to which “listeners”

(IChangeListener) can subscribe. Anyone can then “post” messages on this channel, all listeners will hear about
them.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 62 Utilities

Clipboard Utilities (IMFClipboard)

IMFClipboard and gClipboardUtilities are used to implement copy/paste across extensions and across the Shell. A
IMFClipping interface is used to encapsulate the copied data.

3D Utilities (I3DShUtilities)

I3DShUtilities and gShell3DUtilities give a lot of utility routines specific to Carrara (the previous utilities were more
focused on the framework itself, not the 3D stuff). There are lots and lots of goodies in there, from documents, rooms

and modules management, to animation utilities and shader utilities.

©2001-2007 DAZ 3D, Inc. All rights reserved.

MCCommon References Page 63

MCCommon References

This chapter introduces the MCCommon references included with Carrara. It provides an overview of the application
framework. Some of the MCCommon classes are documented in the Reference.

The MCFrame application framework provides an open architecture that allows you to create a seamless integration
of externally developed components. It includes a single user interface format (similar to the dta format on the
Macintosh) for cross platform use. There is also a cross-platform tool (MCSketch) provided for user interface data
creation.

The frameworks provides basic classes with default behavior for most application-independent functionality such as
windows, controls, dialogs, files, etc.

The framework is composed 3 layers:

e MCCore
e MCFrame (MCF)
e MClImage

Resources are also stored in a platform-independent way. The resource files (.dta) are the same on both platforms and
contain a dump of the Macintosh resource fork. The Macintosh Resource Manager is not used by MCCore; rather,
MCCore reads resources itself. The tools “Data Resource Compiler” and “Res2Data Postlinker” translate data files to
their Mac resource equivalents and vice versa.

Each class in the platform independent part generally begins with TMF. Each MCCore class begins with TMC. Each
class in the platform dependent part generally begins with either TMAC MC or TWIN MC.

MCCore Interfaces

MCCore provides low-level I/O functionality such as files, streams, and memory. The associated files are the IMC*
and MC* headers. MCCore provides a level of abstraction to hide platform-specific code.

The main interfaces of MCCore are:

o IMCGraphicContext: provides Draw, Fill, Blit, GetSystemGCPtr, etc.
¢ IMCFile: provides Get/Read/Write files
¢ IMCFont and IMCFontList: provide accessors to the fonts, individually or as a list.

MCCore also provides a number of low level classes such as dynamic arrays (TMCArray, TMCPtrArray,
TMCClassArray...), smart pointers (TMCCountedPtr), color classes (TMCColorRGB, TMCColorRGBAS...),
rectangles (TMCRect), networking (TMCSocket)....

MCF Interfaces

MCEF provides user interface level functionality such as view system, menus, and widgets. The associated files are the
IMFEx*, IMF*, and MF* headers. MCF provides a hierarchical view system at the user interface level of the
framework.

There are two main interfaces:

o IMFExPart: provides SelfDraw, SelfMouseDown, SelfMouseMoved, etc.
o IMFExResponder: provides Receive, SelfMenuAction, SelfPrepareMenu, SelfKeyDown/Up, etc.

User Interface Flexibility

MCEF interfaces provide complete user interface flexibility to extensions.

Extension user interface is laid out using MCSketch. Refer to “MCSketch” on page 36 to learn more.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 64 MCCommon References

You can add a part extension for any visible user interface part component that you want to extend. When the shell
loads that user interface element from a file, it sees the part extension, and connects the internal user interface part to
the extension part. An extension can over-ride any method in the part to put in specialized behavior. An external part
can also call back to internal part for standard behavior from its method (simulating inheritance!)

MCImage Interfaces

MClImage provides data storage and shared code area.
MClImage provides interfaces for:

¢ Color models and color pickers

¢ Application independent Import/Export (2D/3D specific Import/Export APIs too)
o RasterLayer Utilities (basic layer/channel/tile/pixel interface)

o MC Photoshop Host (ImagelO based component)

©2001-2007 DAZ 3D, Inc. All rights reserved.

Failure Handling Page 65

Failure Handling

Using the Failure Handling

Correctly handling the Failure Handling of Carrara will ensure that your extension will perform in the best conditions
and protect your user for unpleasant situations...

The failure handling in Carrara is based on the standard C++ catch-and-throw scheme. Ray Dream Studio developers
will have to replace their TRY, SUCCESS and CATCH macros by the standard C++ ’try’ and ’catch’ keywords.

General rules

o If anything goes wrong in your code, you are allowed to fail (by calling throw), Carrara will catch the failure
event and displays the infamous “Program Error” dialog box. After that, normal life starts again, so your user can
still save his/her work.

¢ Every time you call a Shell routine, it can fail (especially when allocating memory). So your extension may
want to be prepared for it to perform some clean-up during the Failure Handling phase, or even analyze the prob-
lem, treat it, and resume execution. You do this by implementing a Failure Handler, using the catch keyword.

o Since the scheme is not based on returning error codes, your code stays clean and readable. You implement Fail-
ure Handlers only where necessary.

A first simple example

Consider the following code. We are going to allocate 2 buffers, and we want to make sure that the first buffer is
deleted if the allocation of the second one failed. We also want to delete them if anything goes wrong in the other
procedures we call when using these buffers.

void FailureSamplel ()

{

char* bufferl NULL; // Always initialize to NULL
char* buffer2 = NULL; // Always initialize to NULL

try // This encapsulates the "protected" code

{ //-- “Protected” code starts here --
bufferl = (char*) malloc(128000); // malloc will fail if unsuccessful
buffer2 = (char*) malloc(256000); // Still here ? Go for the 2nd malloc!

..... do whatever you like here (it can trigger failures just fine)....

free (bufferl); bufferl = NULL; // We are done. Note that the pointers
free (buffer2); buffer2 = NULL; // are set to NULL

} //-- End of “protected” code

catch(...)

{ //-- Failure Handler starts here

// Something wrong happened either during the calls to malloc or during
// the code in the middle or in sub procedures. Perform clean-up.
if (bufferl) free(bufferl);
if (buffer2) free(buffer2);
throw; // IMPORTANT ! This will pass the failure over
}//-- End of Failure Handler

Some comments on this code. As you can see, we do no test if buffer! is NULL after the malloc, because we know

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 66 Failure Handling

that if the allocation failed, we shall jump directly to the Failure Handler and not go any further. Likewise, if any
subprocedure fails for one reason or another, it will jump directly to your Failure Handler, bypassing all the stack
levels.

Overall, the code style is much more compact and readable than a classic error handling code, which would look like

this:
long ClassicFailureSample() // We need to return an error code :-(
{
char* bufferl = NULL;
char* buffer2 = NULL;
long error;
bufferl = (char*) malloc(128000) ;
if (bufferl == NULL) return -1;
buffer2 = (char*) malloc (256000) ;
if (buffer2 == NULL)

{

free (bufferl) ;
return -1;

error = SubProc(...);
if (error)

{

free (bufferl) ;
free (buffer2) ;
return error;

//-- Done at last
free (bufferl) ;
free (buffer2) ;

return 0O;

Typically you end up writing more error handling code than useful code, and your code becomes unreadable. Or you
have to use the infamous goto to group your error handling at the end of the procedure. Moreover, you constantly
have to pass over the error codes returned by sub procedures and test them. Most of the time, you end up not writing
any error handling code at all...

Let go back to sample 1, and highlight a few things.

Initializing your local variables properly

It is very important that all local variables that are used in your Failure Handler are always in a “known state”,
especially pointers. Remember that the processor can “jump” in your Failure Handler at any time until you are done
in your protected code block.

¢ Every time you declare a pointer, set it to NULL immediately.
e Every time you free an object, set its pointer to NULL immediately after.

This way your Failure Handler can always safely test your local variables pointers and know if it has to do anything
of not.

Local variables that are not used in the Failure Handler do not require anything special.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Failure Handling Page 67

The Failure Handling Chain

Every time you create a Failure Handler using trvy, it adds your Failure Handler at the top a global chain. When the
try block is completed, it removes the Failure Handler from the chain.

This way, if each Failure Handler calls throw properly, each clean-up will be performed one after the other until the
top level, where the Shell posts the cursed Program Error dialog.

Triggering a Failure yourself by using throw, ThrowlfNil(),
ThrowlfNoMem(), and ThrowlfError()

It may be useful in some situations for your code to launch a Failure to abort in despair. To do this, you use throw,
ThrowIfNil (), ThrowIfNoMem (), or ThrowIfError():

Throwing an error will force the processor to jump to the first Failure Handler in the Failure Handling Chain. Any
code located after throw will never be executed.

In addition, you can use ThrowIfNil(), ThrowIfNoMem(), and ThrowIfError() and other conditional throw routines.
Use ThrowlIfNil to throw if the pointer passed as a parameter is NULL. A NIL pointer error message will appear.

Use ThrowIfNoMem to throw a NULL pointer as the result of a memory allocation failure. A "Not Enough Memory"
error message will appear.

Use ThrowlIfError() with an error code parameter, to throw if this error code is not zero. An appriopriate message
(depending on the error code value) will appear.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 68

Failure Handling

Error codes

Table 4: Standard error codes of Carrara

Value Meaning Message
0 No error or silent error None
-1 Generic Program Error “Program Error”
-2 Memory Manager error. Heap has been “Memory suballocation error(-2)”
corrupted
-3 Bus error "Program Error(-3)"
-4 Bus error or OS exception "Program Error(-4)"
-5 A NULL pointer has been found "Null pointer error(-5)"
-6 "Program Error"
-7 Problem when reading file "Wrong file format"
-8 Going off a list "List out of bounds"
-9 Memory Manager error. Heap has been "Memory suballocation error(-9)"
corrupted
-34 Disk is full “Disk full”
-36 File Open error "File already in use or left open"
-39 End of file error "End of file"
-42 Too many files open "Too many files open”
-43 File not found "File not found"
-45 File is locked "File locked"
-46 Volume is locked "Disk locked"
-49 File is already open with write permission | "File already in use or left open"
-50 Parameter error
-53 Volume is offline "Disk not available"
-102 No object of that type in scrapbook "the specified format is not in the edition"
-108 Out of memory "Not enough memory"
-128 User has cancelled None
-490 User Break
-30001 Unsupported file format "Problem opening this file. Unsupported file format"
-30002 Generic file i/o problem "Problem reading this file"
-30003 Memory startup problem "Not enough Memory to launch"
-30004 Windows Graphics space error "Not enough Graphic memory space (GDI) to launch"

©2001-2007 DAZ 3D, Inc. All rights reserved.

Failure Handling

Page 69

Table 4: Standard error codes of Carrara

Value Meaning Message

-30005 Windows User space error "Not enough User memory space (windows, menus...) to
launch"

-30006 File not found when reverting "Disk copy deleted"

-30008 Error in Save Again "Document currently open"

-30009 Wrong File Type "Not the right kind of document"

-30010 Unimplemented feature "Feature not yet implemented"

-30011 The C++ class could not be found "\"A3\": Missing Sofware component";

-30012 The Class signature could not be found "Missing Sofware component"

-30013 Drive mapping error "Could not map network to local drive. All drives A:
through Z: are in use"

-30014 External texture error "External Texture Map or Movie not found"

-30015 Corrupted data error "File had corrupted data"

-30016 DirectDraw init error “Direct Draw driver needs to be installed"

-30017 MacOS system memory error "Not enough memory left for the system (Finder)"

-30018 Help memory error "Not enough memory left to open the Help file"

Message parameter coding

You can use the message filed of the TMCException class to have more control on the alert that will be posted.

Let hiMessage be the high 16 bits and loMessage the lower 16 bits of message.

Table 5: Message values

hiMessage Meaning
0 loMessage is an Action Number (like in CMNU or TBAR resources). The Shell will try to find the cor-
responding name and display it in the alert. Example : Program Error in “Save As...”
OxFFFF loMessage is the ID of a ALRT/DITL resource. If a DITL item contains a "0 substituion tag, it will be
replaced by the name of the error as found in the Errors table.
0xFFFE loMessage is an error code used by Carrara to parse his errors string table.
other values Carrara will post an alert containing the string located at the loMessage index in STR# (hiMessage).

Failing Silently

Sometimes, you will want to fail silently, i.e. abort without posting the Program Error dialog. To do this, pass 0 as the

error code and message:

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 70 Failure Handling

throw TMCException (0, 0);

All failure handlers will be processed, but no dialog will appear.

Recovering from a Failure

In some situation, your code can decide that it treated the Failure to its full extent and that normal execution of the
code should resume. For example, you may have tried to allocate a very large buffer in RAM and it failed, but your
code has an alternate solution (using a smaller buffer for example).

To do this, simply do net call throw at the end of your Failure Handler. The processor will exit the catch block
normally and keep going. It is perfectly safe and legal to do so.

Some (lazy) programmers use this in combination with throw TMCException(., .) to exit quickly from a deep
part of their code and go back at the top level, using the “message” parameter of the TMCException to pass over
some information of what happened.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Multi-Threading Page 71

Multi-Threading

This chapter explains the use of Multi-Threading with Carrara and the various issues that arise when an extension is
called from threads (for instance during the rendering)

Two types of threads.

Carrara has two different types of threads:

e Cooperative threads do not run concurrently. The cooperative threads have to call IShThreadUltilities::Yield-
Processes on a regular basis so that the other threads can be executed.

¢ Preemptive threads run concurrently. If your system has more than one processor, each thread can run on a dif-
ferent processor.

You should use cooperatives threads when you are calling functions that are not reentrant. Cooperative threads tend
to be easier to manage because there is no synchronization issues.

You should use preemptive threads when you are want to take advantage of the multiprocessor or when you want to
make sure your threads does not block the application. You should note that the rendering is using preemptive threads
so you have to make sure that the calls to your extensions that are called during the rendering are reentrant.

Extensions and multi-threading

Using preemptive threads means that your extension might be simultaneously running on many (two or more)
processors. So if your extension is using global variables, static members, or those types of features, each processor
will share and modify that information at the same time. That means they will influence each other. In other words,
each processor will introduce bugs on the other processor’s computations.

Do not use static members or global variables if you are using SMP.

To make your life easier certain type of extensions are duplicated (cloned) by the Shell so that you do not have to
worry about the fields of your extensions being accessed by two processors. Here is the list of the extensions that use
a different copy for each thread:

o Ambient Light
o Atmosphere

e Backdrop

e Background

o Shaders

All other type of extensions are shared between the various threads. If a method of your component is called during
the rendering, you must make sure that it is reentrant because on a multiprocessor system, it will probably be called
by both processors. Note that a number of calls are protected by critical sections so that only one processor can call it
at the same time (for instance GetFacetMesh). However if you are not sure, you should make your calls reentrant.

Now, if you are familiar with Multi-threading issues and want to write an extension that uses the full power of the
platform in a specific way, Carrara’s SDK provides interfaces to do so. If you are interested, look at the files /Include/
MCCommon/IShSMP.h

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 72 Multi-Threading

©2001-2007 DAZ 3D, Inc. All rights reserved.

DataBase Overview Page 73

DataBase Overview

Carrara stores all the data of currently open documents in a global database. Third party extensions can access this
database to access or modify these data. To each open document corresponds one scene.

Scene

A Scene is mostly comprised of 2 structures:

o An Object List, that contains all the Objects used in the scene.
o A Scene Tree that contains the hierarchical structure of the scene. This defines the positions and relationships
between Tree Elements. These tree elements can be object instances, light sources, cameras and groups.

Objects

Objects (also called Master Objects) contain the geometric information defining its surface regardless of its position.
They also contain the texture coordinates of the object. The Master Objects used in a Scene are located in the Objects
tab of the Browser window in Carrara.

There are two types of Master Object (I3DShObject): Primitives (I3DShPrimitive) and Master Groups
(I3DShMasterGroup).

Primitives are the basic objects that are located in the toolbar as icons. There are different classes of primitives.
Carrara defines a certain number of default internal primitives (the Polygon Array, the Patch Array, the Polygon
List...). However most of the primitives are external primitives (coded in regular extensions) like the Cube, the
Sphere, the Isocaedra, etc. The Sdk allows you to create your own type of primitive.

Scene Tree and Tree Elements

The scene tree is a hierarchical structure containing Tree Elements (they implement the interface I3DShTreeElement).
There are four types of tree elements:

e Object Instances: they implement I3DShInstance, I3DShShadableTree
¢ Light Sources: they implement I3DShLightsource, I3DShInstance

e Cameras: they implement 3DShCamera, 13DShInstance

¢ Groups: they implement I3DShGroup, I3DShShadableTree

Those elements are detailed below. All these elements have 2 things in common:

e a position in 3D space (orientation, location, scaling, etc...)
e a name
Object Instances

An object instance is a tree element that has a reference to a Master Object in the object list. Therefore there can be
multiple instances in a scene of a same object. This object can be either a Primitive (I3DShPrimitive) or a Master
Group (I3DShMasterGroup).

The instance also defines the shading of the object and implements I3DShShadableTree and points to a one of the
Master Shader of the scene.

Lights

A Light Source is a tree element. There can be as many lights as needed in a scene. Light Sources are implemented as

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 74 DataBase Overview

Extensions.

Cameras
A Camera is another type of tree element. Like lights, there can be many cameras in a scene. One of them will be the
Rendering Camera, i.e. the camera the final image will be rendered from. Cameras are implemented as Extensions.
Groups

A Group is a tree element used to gather other tree elements together. It can be open or closed.

Master Groups vs Primitives

In order to make clearer these two notions, let’s consider a basic example. We are supposed to model a scene with
two columns (see fig. 1).

First using regular instances, we can make the parallel with a class in C++. Basically, if we change the color or the
shape of the Column Master Object, these two instances will change as well.

However, we are not able to “factorize” the position or orientation. If we want to move the base of the column, it will
not move the base of the other column.

As opposed to the previous situation, by using Master Groups, moving the base of one column results in moving the
other one. Indeed, in that case, the transformations are automatically updated.

Coordinate Systems

Global Coordinate System

When you look at the Assemble room in Carrara, the axis of the Global Coordinate System are organized like this:

©2001-2007 DAZ 3D, Inc. All rights reserved.

DataBase Overview Page 75

Figure 1. The Global Coordinate System

The projection of the (0, 0, 0) origin falls in the middle of each plane of the Working Box (the origin is not the far
corner of the box). The I, J, K vectors are the unit vectors of the X, Y and Z axis.

Working Box Coordinate System

The Working Box Coordinate System is defined by the position of the Working Box. As the Working Box can be
moved and rotated in Carrara, this coordinate system can be useful in some complex scenes. However, this system is
never used when dealing with Extensions, so we will just mention it here.

Local Coordinate System (or Object Coordinate System)

The Local Coordinate System (also sometimes called the Object Coordinate System) define the system of an object or
a group. Its axis, origin and scale depends on the positioning of the object in space.

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 76 DataBase Overview

Figure 2. The Local Coordinate System of an object in a scene

The i, j and k vectors are the unit vectors of the X, y and z axis.

Screen Coordinate System

When a rendering occurs, the 3D data is projected onto the screen through the rendering camera. The axis of the 3D
coordinate system attached to the screen is like this:

©2001-2007 DAZ 3D, Inc. All rights reserved.

DataBase Overview Page 77

Horee o

Figure 3. The Screen Coordinate System

As one can see, the objects seen by the camera have a negative z coordinate. The screen and the Screen Coordinate
System are centered on the camera’s center.

The Screen Coordinate System versus the Camera’s Coordinate System

There is a slight difficulty here. The camera’s aim is along the y axis of its transformation. As a result, here is the
Local Coordinate System of the camera in the previous figure:

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 78 DataBase Overview

Figure 4. The camera’s Local Coordinate System

You do not need to worry too much about this difference, because transformations calculated by the 3D Shell takes
this into account. It is important only if you intend to position a camera in a scene.

The screen pixels space

The Screen Pixels Space is the actual Pixels coordinate system used to render the final image. Its unit system is in
Points, as opposed to all other coordinate systems which are in 3D units. As a result:

1 3D unit = 288 points
because 1 inch = 72 points. More on the units business is covered later.

It is oriented with its vertical axis going down, and its (0, 0) origin in the top left corner of the image:

©2001-2007 DAZ 3D, Inc. All rights reserved.

DataBase Overview Page 79

(00

Horee T

Figure 5. The Screen Pixels Space

Geometry

Geometric data type: 32-bit floating point (float)

All geometric data is in 32-bit floating point format:

typedef float Real;

Units System

The units system used in Carrara is defined as follows:

1l 3D unit = 1 inch

All geometric data uses the 3D units. The various units shown by Carrara in the Properties tray are just handled at the
user interface level.

The advantage of using a fixed system like this is that there is no problem of data conversion into different units.

Tree Elements Transformation

Each tree element (object instance, light source, group or camera) is defined relatively to its parent in the tree.
Depending of the API procedure you call, you will get the transformation parameters that define the attitude of the
object in space in one format or another. Whatever callback you use, you will get the following data:

o A 3x3 rotation matrix R (or the 3 vectors that define it)
e A translation vector T

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 80 DataBase Overview

o A uniform scaling factor s

To transform a point from the Local Coordinate System of this tree element into the Coordinate System of its parent,
the following formula is used:

M=s[Rlm+T
with m the point in local coordinates, and M the same point in the parent’s coordinates.

To make it easier to read, here is the same equation in expanded format for each x, y and z coordinate:
M, =s(R,xm +R xm,+R xm)+T,
M, =s(R,xm +R, xm +R, xm)+T

M, =s(R;, xm +R;, xm +R,, xm,)+T,
With :

* m(my, my, m,)point in local coordinates
* M(My, My, M,)point in parent’s coordinates
* T(Ty, Ty, T)position of the tree element origin in parent’s coordinates

os uniform scaling factor
R rotation matrix (see below)

More on the rotation matrix:

If you consider the 3 i(iy, iy, i), j(x- Jy» J,) and k(ky, ky, k;) vectors of the Local Coordinates System, you can write
easily the R matrix by putting each vector in each column like this:

ix jx kx
[R] = i)’ jy k)’
iz jz kz

For additional information on transformation matrices and Tree Transformations, see the Data Structure chapters in
the Reference.

Geometry basics

When you deal with objects, there are several concepts to define that are related to the object’s shape.
Surface Point

Carrara deals with surfaces, not volumes. An object is made of surfaces that can be arbitrary complex. A point P on a
surface is made of its X, y and z coordinates in the Object Coordinate System.

©2001-2007 DAZ 3D, Inc. All rights reserved.

DataBase Overview Page 81

Figure 6. A point on a surface
Surface Normal

The Surface Normal at a point is the vector perpendicular to a plan that would be tangent to the surface at that point.
The Normal is very important in 3D computer graphics, because it is heavily used for shading (especially in Phong
and Ray Tracing shadings). Normals are usually normalized (their length is equal to 1), and always point outward.

NiNx Ny ,Nz)

Figure 7. A Normal to the surface
Note that :

N +N +N’=1

UV Space (Texture Coordinate System)

Wrapping a texture (such as a texture map) on an object surface involves finding the correspondence (the "mapping")
between a 2D space (the image) and a 3D space (the object surface). The typical rendering question is: "I have a point
P(x, y, z) on my surface, where should I look up in the texture map ?".

When one deals with simple shapes (sphere, cube, cylinders, etc.), it is easy to find a mapping. When one deals with
complex objects (list of facets or patches), the matter becomes much more difficult. To solve this, most packages use
a technique called "projection mapping": an intermediate imaginary surface surrounding the object is used, and the
texture is placed on it. Then the surface color at a point is calculated by using the part of the texture that the point is
facing.

The problem with this is that you can get awkward results when the object is very unlike the intermediate surface.
Unwanted deformation is a typical problem: you want the texture to shrink or enlarge only where the object surface

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 82 DataBase Overview

does.
Parametric mapping - a better solution

The Carrara Spline modeler is in fact capable of generating what we call "UV spaces", and the architecture of Carrara
can keep this information down to the facets or bicubic patches level, in order to allow direct mapping (also called
"Parametric Mapping").

The idea is this: because objects are built by combining 2D curves, it is possible to generate a 2D space that will
behave topologically like the object surface.

Figure 8. A typical u,v space on the side surface of an object

Every time you deal with a 3D point on the surface, you will be able to calculate the u,v coordinates for this point
(provided that the object supports UV spacing). Say you need to know if the point is covered by a layer. The location
of the layer is known by the u,v coordinates of its corners. The test becomes a simple 2D test: "are the u,v coordinates
of the point inside a 2D rectangle ?".

Most of the time you get the u,v values from the 3D Shell. The only case where you have to generate them is when
you develop a geometric primitive extension.

If the object has some surface discontinuities, then several u,v spaces are generated for the object. For example if
your extrude a closed 2D curve, you will get 3 u,v spaces: one for the side surface, one for the back face and one for
the front face. This is because it is not possible to have a u,v continuity across these different parts of the object (think
of the problem of a napkin on a table). Each UV space has a number (0, 1, 2...), called a UV Space ID.

Shading

The shading can be applied on an object by giving general properties (color, reflection...) to the object or by mapping
a texture on it. There is 4 ways of mapping a texture on an object.

e the parametric mapping,
e the box mapping,

o the cylindrical mapping,
o the spherical mapping.

The parametric mapping is the mapping using the UV Space information as seen in the last section. This is the better
way of mapping, but because all objects don’t have necessarily a UV Space, four other ways of mapping are
provided.

The box mapping, the cylindrical mapping and the sphere mapping are obtained by projecting a texture on a cube,
cylinder or a cube on the object.

©2001-2007 DAZ 3D, Inc. All rights reserved.

DataBase Overview Page 83

Facets

There are two kinds of low level geometric data used for rendering, exporting, etc.: facets and bicubic patches.

HA
N

E
Figure 9. A 3D facet

Facets are triangles. Each vertex contains the (X, y, z) coordinates of the point, the Normal at this point, and the u,v
coordinates at this point. The facet also stores the u,v Space ID to which it belongs.

typedef struct VERTEX3D ({

VECTOR3D fvertex; // X, y, z vertex coordinates
VECTOR3D fNormal; // Nx, Ny, Nz normal values at that vertex
NUM3D fu, fv; // Texture u,v values at that vertex

} VERTEX3D;

typedef struct FACET3D{

VERTEX3D fVertices[3]; // The facet three vertices

short fUVSpace; // UV Space ID this facet belongs to
short fReserved; // Reserved - 0

} FACET3D;

Interpolating in a facet

Interpolating a point in a facet is a common exercise in 3D. If you call the vertices A, B and C, their Normals NA,
NB, NC, and their u,v values uA, vA, uB, vB, and uC, vC, then:

from:

P=04+pBB+yC

you can interpolate:

N = aNA +BNB + yNC

Don’t forget to renormalize the normal:

N.=N

nnit \/F

Likewise:

u = ouAd + BuB + yuC
v=0ovA4+pvB +ywC

Of course, this is an approximation of the real values, but facets are already approximations of the real surface. As

©2001-2007 DAZ 3D, Inc. All rights reserved.

Page 84 DataBase Overview

long as facets are small enough, this works just fine.

Bicubic Patches

Bicubic patches are more interesting geometric entities. They can describe more complex surfaces than facets, and
are more resolution independent. For example Extrusions created by Carrara’s Spline modeler generate bicubic
patches. Turn on the Wireframe display; what you see are the boundaries of the patches.

Figure 10. A bicubic patch

A patch is made of 16 3D points. You can think of a bicubic patch as a cubic Bézier curve that has its 4 vertices
moving along 4 other Bézier curves.

typedef struct PATCH3D{

VECTOR3D fVertices([4] [4]; // The patch 16 vertices

NUM3D ful2]; // u values at the patch boundaries
NUM3D fvi[2]; // v values at the patch boundaries
short fUVSpace; // UV Space ID this patch belongs to
short fReserved; // Reserved - 0

} PATCH3D;

One can think of a bicubic Bézier patch as a Bézier curve moving on 4 other perpendicular Bézier curves. Let’s apply
this concept to calculate a point on the surface.

The patch can be defined as a parametric surface of two normalized parameters, tu and tv.
Bicubic Patch = S(t, , t,)
0.0<t;<1.0
00<t,<1.0

First consider the 4 Bézier curves defined by CO=(P00, P10, P20, P30), C1=(P01, P11, P21, P31), C2=(P02, P12,
P22, P32), and C3=(P03, P13, P23, P33), and calculate on each a point at t;:

P,(t,) = P, (1-t,)"+ 3P, (1-t,)t, + 3P, (1-t,)t,” +Pyt,’

3n"u

Then calculate the point at tv on the Bézier curve (PO(t,,), P1(t,), P2(t,), P3(t,)) by re-using the same formulae as
above. This is the result.

Patch normals

A nice thing about patches is that you do not have to worry about storing normals: they are automatically defined by
the patch geometry. So this means that you do not have to calculate them for the 3D Shell. For the Mathematics savvy
reader, remember, normals are defined as:

©2001-2007 DAZ 3D, Inc. All rights reserved.

DataBase Overview Page 85

Patch u,v Space

The u and v values are constant along the patch boundaries.
P00, PO1, P02, P03: u[0] P00, P10, P20, P30: v[0]
P30, P31, P32, P33: u[1] P03, P13, P23, P33: v[1]

(u, v) values at any point on the patch is calculated from these boundaries values by doing a Bézier interpolation.

(ur0], +{1])

y Fog
|

Py
0 Byg (U] 1], 4{1]]
P
(WL a]
P
_\\ ful 17, {0])
¥

Figure 11. A patch (u,v) Space
To learn more about Bézier bicubic Patches

Read the excellent book « Introduction to Computer Graphics » by Folley - Van Dame - , published by Addison-
Weisley.

Also take a look at source of the examples of the Carrara SDK, like the Teapot primitive or the patch deformer.

Color

In Carrara, two ways are used to stock a color : first a COLOR3D (See the Data Structures chapter in Reference
Manual), then a long. <zot> TColor3D??

In a long (32 bits), we use this order ARGB, with the higher significant byte as A and the lower significante byte B.

32 24 16 8 0
Color in long (32-bits) format.

©2001-2007 DAZ 3D, Inc. All rights reserved.

	Overview
	Table of Content
	Introduction
	What is the Carrara SDK ?
	An open architecture for 3D.
	Headers and library.
	Samples.
	Documentation.
	MCSketch.
	Supported Platforms and Compilers.

	What’s New in Carrara 6 ?
	Unicode support
	Non Linear Animation
	Large scenes support
	Multiple selection

	What’s New in Carrara 5 ?
	Change in resource files
	Scene commands
	Ghost menu
	Tree chooser dialog
	Class Id definition
	Lighting Models
	Change in interfaces

	How the whole thing works
	Shell and Extensions
	COM dynamic linking
	Identifying Components at startup: Auto Plug-And-Play
	Family ID, Class ID...
	...And Instances
	Communicating between the 3D Shell and the 3D Component
	Component User Interface and Parameter Maps (PMap)

	Creating an Extension
	The resource files (.dat and .txt)
	Building the resource file
	On Windows:
	On MacOS

	Extracting the localized strings from .dta
	The ’COMP’ resource
	The ’GUID’ resource
	The ’PMap’ resource
	Shaders and PMaps

	The executable file (.mcx)
	Build the executable
	Entry Points
	The Component Class
	TBasicUnknown

	User Interface
	The ’Node’ resource.
	The Pmap buffer

	Using DAZ’s COM Dynamic Linking
	About COM
	Component Registration Process
	How the Component Server Works
	How the Application Calls your Extension
	Extension Entry Points
	Minimal resources
	How your Extension Calls into the Application
	Using Shell objects received as parameters
	Using preset Shell objects stored in the library global variables
	Instanciating a Shell object yourself

	The “PMap” resource

	IMCUnknown class
	What is a COM object?
	QueryInterface
	AddRef
	Release
	More on QueryInterface, AddRef and Release

	Registering your Class ID with DAZ
	How to register
	Contacting DAZ - Developers Mailing list

	Platforms and Compilers issues
	Compiling for Windows
	Creating a new extension project for Visual C++ 2005:

	Compiling for MacOS
	Creating a new project for XCode
	Debugging on MacOS

	User Interface
	User Interface Options
	No User Interface
	Auto PMap
	PMap and a Part
	Samples using a PMap and .rsr file

	Part Extensions
	To create a part extension:

	Manually Controlling Your Own User Interface
	Creating your User Interface Containers
	Using a Dialog box
	Using a Window
	Setting a Child Part’s Values

	Examples of Specific user interface elements
	Registration Dialog box
	Tab Part
	Creating a Component Chooser

	MCSketch
	Extra Tokens for Each Part
	List of all UI elements (parts)
	TMFEditTextPart - Edit Text part
	TMFIconButtonPart
	TMFTextButtonPart
	TMFDialPart
	TMFHierarchicalListPart
	TMFImagePart
	TMFCheckboxPart
	TMFColorPart
	TMFOverlayImageControlPart
	TMFRadioPart
	TMFToolbarPart
	TMFNodePart
	TMFAutoCenteringPart
	TMFBalloonPart
	TMFWindoidPart
	TMFDialogoidPart
	TMFCollapsiblePart, TMFSelectableCollapsiblePart
	TSingleComponentChooser
	TMultipleComponentChooser
	TMFFramePart
	TMFGradientPart
	TMFNodeReferencePart
	TMFRadioCluster
	TMFScrollPart
	TMFSlider, TMFCircularSliderPart, TMFLinearSliderPart
	TMFSolidColorPart
	TMFSplit3Part
	TMFCollapsibleListPart
	TMFVectorPart
	TMFListPart, TMFRuledListPart, TMFStringListPart
	TMFOffscreenPart
	TMFPoppedPart
	TMFRectPart
	TMFStaticTextPart
	TMFTextPopupPart

	Interfaces supported by each UI element (part)

	Counted Pointers
	Defining Classes that May Need to be Counted
	TMCCountedObject/TMCSMPCountedObject
	Using AddRef() and Release()
	Implementing Create
	Implementing a Counted Pointer Access Method
	Implementing QueryInterface()
	Helper Classes for Counted Pointers
	Example of TMCCountedGetHelper
	Example of TMCCountedCreateHelper

	TMCCountedPtr vs Interface Pointer
	Two functions returning InterfacePtr
	Never return a CountedPtr
	Creating objects
	Aggregation

	Utilities
	Various Shell Utilities (IShUtilities)
	Thread Utilities (IShTreadUtilities)
	Component Utilities (IShComponentUtilities)
	SMP Utilities (IShSMPUtilities)
	Action Utilities (IShActionManager)
	Menu Utilities (IShMenuUtilities)
	Part Utilities (IShPartUtilities)
	Resource Utilities (IShResourceUtilities)
	File Handling (IShFileUtilities)
	Creating Files
	Opening Files
	Working with Streams

	Personality Utilities (IShPersonalityUtilities)
	Drag & Drop Utilities (IShDragAndDropUtilities)
	Change Management (IChangeManager)
	Clipboard Utilities (IMFClipboard)
	3D Utilities (I3DShUtilities)

	MCCommon References
	MCCore Interfaces
	MCF Interfaces
	User Interface Flexibility

	MCImage Interfaces

	Failure Handling
	Using the Failure Handling
	General rules
	A first simple example
	Initializing your local variables properly
	The Failure Handling Chain
	Triggering a Failure yourself by using throw, ThrowIfNil(), ThrowIfNoMem(), and ThrowIfError()
	Error codes
	Message parameter coding
	Failing Silently
	Recovering from a Failure

	Multi-Threading
	Two types of threads.
	Extensions and multi-threading

	DataBase Overview
	Scene
	Objects
	Scene Tree and Tree Elements
	Object Instances
	Lights
	Cameras
	Groups
	Master Groups vs Primitives

	Coordinate Systems
	Global Coordinate System
	Working Box Coordinate System
	Local Coordinate System (or Object Coordinate System)
	Screen Coordinate System
	The screen pixels space

	Geometry
	Geometric data type: 32-bit floating point (float)
	Units System
	Tree Elements Transformation
	More on the rotation matrix:

	Geometry basics
	Surface Point
	Surface Normal

	UV Space (Texture Coordinate System)
	Parametric mapping - a better solution

	Shading
	Facets
	Interpolating in a facet

	Bicubic Patches
	Patch normals
	Patch u,v Space
	To learn more about Bézier bicubic Patches

	Color

